Abstract

The terahertz radiation produced by a 2-color femtosecond laser scheme strongly saturates and develops an oscillatory behavior with increasing power of the driving femtosecond laser pulses. This is explained by the formation of a plasma channel due to filamentation. Due to dispersion inside the filament and the Gouy phase shift, the phase difference between the 800 nm and 400 nm pulses varies along this plasma emitter. As a result, the local THz radiations generated along the filament interfere destructively or constructively, which manifests itself in the form of Maker fringes.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kress, T. Löffler, S. Eden, M. Thomson, and H. G. Roskos, “Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves,” Opt. Lett. 29(10), 1120–1122 (2004).
    [CrossRef]
  2. X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
    [CrossRef]
  3. K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 8, 4577–4584 (2008).
  4. A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
    [CrossRef]
  5. S. Tzortzakis, G. Méchain, G.-B. Patalano, Y.-B. André, B. Prade, M. Franco, A. Mysyrowicz, J.-M. Munier, M. Gheudin, G. Beaudin, and P. Encrenaz, “Coherent subterahertz radiation from femtosecond infrared filaments in air,” Opt. Lett. 27(21), 1944–1946 (2002).
    [CrossRef]
  6. We also performed an independent experiment with properly chosen experimental parameters and carefully aligned BBO crystal to test how the THz yield depends on the BBO-focus distance. In these measurements, a sin-like dependence was confirmed for 3 largely different BBO rotation angle.
  7. H. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103–261105 (2006).
    [CrossRef]
  8. P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonic,” Phys. Rev. Lett. 8(1), 21–22 (1962).
    [CrossRef]
  9. A. Proulx, A. Talebpour, S. Petit, and S. L. Chin, “Fast pulsed electrical field created from the self-generated filament of a femtosecond Ti:sapphire laser pulse in air,” Opt. Commun. 174(1-4), 305–309 (2000).
    [CrossRef]
  10. S. A. Hosseini, B. Ferland, and S. L. Chin, “Measurement of filament length generated by an intense femtosecond laser pulse using electromagnetic radiation detection,” Appl. Phys. B 76, 583–586 (2003).
  11. F. Lindner, G. G. Paulus, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Gouy phase shift for few-cycle laser pulses,” Phys. Rev. Lett. 92(11), 113001 (2004).
    [CrossRef]
  12. H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasiphase matching in Xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
    [CrossRef]

2008

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 8, 4577–4584 (2008).

2007

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[CrossRef]

2006

H. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103–261105 (2006).
[CrossRef]

X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[CrossRef]

2004

F. Lindner, G. G. Paulus, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Gouy phase shift for few-cycle laser pulses,” Phys. Rev. Lett. 92(11), 113001 (2004).
[CrossRef]

M. Kress, T. Löffler, S. Eden, M. Thomson, and H. G. Roskos, “Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves,” Opt. Lett. 29(10), 1120–1122 (2004).
[CrossRef]

2003

S. A. Hosseini, B. Ferland, and S. L. Chin, “Measurement of filament length generated by an intense femtosecond laser pulse using electromagnetic radiation detection,” Appl. Phys. B 76, 583–586 (2003).

2002

2000

A. Proulx, A. Talebpour, S. Petit, and S. L. Chin, “Fast pulsed electrical field created from the self-generated filament of a femtosecond Ti:sapphire laser pulse in air,” Opt. Commun. 174(1-4), 305–309 (2000).
[CrossRef]

1998

H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasiphase matching in Xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
[CrossRef]

1962

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonic,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[CrossRef]

Agostini, P.

H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasiphase matching in Xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
[CrossRef]

André, Y.-B.

Baltuska, A.

F. Lindner, G. G. Paulus, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Gouy phase shift for few-cycle laser pulses,” Phys. Rev. Lett. 92(11), 113001 (2004).
[CrossRef]

Beaudin, G.

Breger, P.

H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasiphase matching in Xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
[CrossRef]

Chin, S. L.

S. A. Hosseini, B. Ferland, and S. L. Chin, “Measurement of filament length generated by an intense femtosecond laser pulse using electromagnetic radiation detection,” Appl. Phys. B 76, 583–586 (2003).

A. Proulx, A. Talebpour, S. Petit, and S. L. Chin, “Fast pulsed electrical field created from the self-generated filament of a femtosecond Ti:sapphire laser pulse in air,” Opt. Commun. 174(1-4), 305–309 (2000).
[CrossRef]

Chiron, A.

H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasiphase matching in Xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
[CrossRef]

Couairon, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[CrossRef]

Dai, J.

X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[CrossRef]

Eden, S.

Encrenaz, P.

Ferland, B.

S. A. Hosseini, B. Ferland, and S. L. Chin, “Measurement of filament length generated by an intense femtosecond laser pulse using electromagnetic radiation detection,” Appl. Phys. B 76, 583–586 (2003).

Franco, M.

Gheudin, M.

Glownia, J. H.

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 8, 4577–4584 (2008).

Goulielmakis, E.

F. Lindner, G. G. Paulus, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Gouy phase shift for few-cycle laser pulses,” Phys. Rev. Lett. 92(11), 113001 (2004).
[CrossRef]

Hosseini, S. A.

S. A. Hosseini, B. Ferland, and S. L. Chin, “Measurement of filament length generated by an intense femtosecond laser pulse using electromagnetic radiation detection,” Appl. Phys. B 76, 583–586 (2003).

Karpowicz, N.

H. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103–261105 (2006).
[CrossRef]

Kim, K. Y.

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 8, 4577–4584 (2008).

Krausz, F.

F. Lindner, G. G. Paulus, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Gouy phase shift for few-cycle laser pulses,” Phys. Rev. Lett. 92(11), 113001 (2004).
[CrossRef]

Kress, M.

Lange, H. R.

H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasiphase matching in Xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
[CrossRef]

Lezius, M.

F. Lindner, G. G. Paulus, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Gouy phase shift for few-cycle laser pulses,” Phys. Rev. Lett. 92(11), 113001 (2004).
[CrossRef]

Lindner, F.

F. Lindner, G. G. Paulus, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Gouy phase shift for few-cycle laser pulses,” Phys. Rev. Lett. 92(11), 113001 (2004).
[CrossRef]

Löffler, T.

Maker, P. D.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonic,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[CrossRef]

Méchain, G.

Munier, J.-M.

Mysyrowicz, A.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[CrossRef]

S. Tzortzakis, G. Méchain, G.-B. Patalano, Y.-B. André, B. Prade, M. Franco, A. Mysyrowicz, J.-M. Munier, M. Gheudin, G. Beaudin, and P. Encrenaz, “Coherent subterahertz radiation from femtosecond infrared filaments in air,” Opt. Lett. 27(21), 1944–1946 (2002).
[CrossRef]

H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasiphase matching in Xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
[CrossRef]

Nisenoff, M.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonic,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[CrossRef]

Patalano, G.-B.

Paulus, G. G.

F. Lindner, G. G. Paulus, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Gouy phase shift for few-cycle laser pulses,” Phys. Rev. Lett. 92(11), 113001 (2004).
[CrossRef]

Petit, S.

A. Proulx, A. Talebpour, S. Petit, and S. L. Chin, “Fast pulsed electrical field created from the self-generated filament of a femtosecond Ti:sapphire laser pulse in air,” Opt. Commun. 174(1-4), 305–309 (2000).
[CrossRef]

Prade, B.

Proulx, A.

A. Proulx, A. Talebpour, S. Petit, and S. L. Chin, “Fast pulsed electrical field created from the self-generated filament of a femtosecond Ti:sapphire laser pulse in air,” Opt. Commun. 174(1-4), 305–309 (2000).
[CrossRef]

Ripoche, J. F.

H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasiphase matching in Xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
[CrossRef]

Rodriguez, G.

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 8, 4577–4584 (2008).

Roskos, H. G.

Savage, C. M.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonic,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[CrossRef]

Talebpour, A.

A. Proulx, A. Talebpour, S. Petit, and S. L. Chin, “Fast pulsed electrical field created from the self-generated filament of a femtosecond Ti:sapphire laser pulse in air,” Opt. Commun. 174(1-4), 305–309 (2000).
[CrossRef]

Taylor, A. J.

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 8, 4577–4584 (2008).

Terhune, R. W.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonic,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[CrossRef]

Thomson, M.

Tzortzakis, S.

Walther, H.

F. Lindner, G. G. Paulus, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Gouy phase shift for few-cycle laser pulses,” Phys. Rev. Lett. 92(11), 113001 (2004).
[CrossRef]

Xie, X.

X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[CrossRef]

Zhang, X.-C.

X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[CrossRef]

H. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103–261105 (2006).
[CrossRef]

Zhong, H.

H. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103–261105 (2006).
[CrossRef]

Appl. Phys. B

S. A. Hosseini, B. Ferland, and S. L. Chin, “Measurement of filament length generated by an intense femtosecond laser pulse using electromagnetic radiation detection,” Appl. Phys. B 76, 583–586 (2003).

Appl. Phys. Lett.

H. Zhong, N. Karpowicz, and X.-C. Zhang, “Terahertz emission profile from laser-induced air plasma,” Appl. Phys. Lett. 88(26), 261103–261105 (2006).
[CrossRef]

Opt. Commun.

A. Proulx, A. Talebpour, S. Petit, and S. L. Chin, “Fast pulsed electrical field created from the self-generated filament of a femtosecond Ti:sapphire laser pulse in air,” Opt. Commun. 174(1-4), 305–309 (2000).
[CrossRef]

Opt. Express

K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, “Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields,” Opt. Express 8, 4577–4584 (2008).

Opt. Lett.

Phys. Rep.

A. Couairon and A. Mysyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441(2-4), 47–189 (2007).
[CrossRef]

Phys. Rev. Lett.

P. D. Maker, R. W. Terhune, M. Nisenoff, and C. M. Savage, “Effects of dispersion and focusing on the production of optical harmonic,” Phys. Rev. Lett. 8(1), 21–22 (1962).
[CrossRef]

X. Xie, J. Dai, and X.-C. Zhang, “Coherent control of THz wave generation in ambient air,” Phys. Rev. Lett. 96(7), 075005 (2006).
[CrossRef]

F. Lindner, G. G. Paulus, H. Walther, A. Baltuska, E. Goulielmakis, M. Lezius, and F. Krausz, “Gouy phase shift for few-cycle laser pulses,” Phys. Rev. Lett. 92(11), 113001 (2004).
[CrossRef]

H. R. Lange, A. Chiron, J. F. Ripoche, A. Mysyrowicz, P. Breger, and P. Agostini, “High-order harmonic generation and quasiphase matching in Xenon using self-guided femtosecond pulses,” Phys. Rev. Lett. 81(8), 1611–1613 (1998).
[CrossRef]

Other

We also performed an independent experiment with properly chosen experimental parameters and carefully aligned BBO crystal to test how the THz yield depends on the BBO-focus distance. In these measurements, a sin-like dependence was confirmed for 3 largely different BBO rotation angle.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) schematic experimental setup, (b) modeling of the filament THz emitter (see the text for details).

Fig. 2.
Fig. 2.

Terahertz intensity as a function of the incident IR pulse energy. The stars show the results with the BK7 rephaser for quasi phase matching.

Fig. 3.
Fig. 3.

Luminescence images of the filaments for IR input energy of (a) 210 µJ, (c) 340 µJ, (e) 510 µJ. In (b), (d), (f), the THz intensity are plotted as function of the position of the scanning aperture. The aperture is scanned from left to right. In (b), the local emitters along the filament interfere constructively in the far field, while in (f) they interfere destructively.

Fig. 4.
Fig. 4.

(a) and (b) typical antenna signals with opposite polarities. (c) Peak-to-peak amplitude of the antenna signal as a function of the BBO to geometric focus distance. The focal lens is 1000 mm and the antenna is positioned at the beginning of the filament. (d) Peak-to-peak amplitude of the antenna signal along the filament shown in Fig. 3(e). This polarity reversal could be closely related to the Gouy phase shift [11] and will be discussed in more detail at the end of this paper.

Fig. 5.
Fig. 5.

THz signal as a function of the BBO to geometric focus distance. (a) experimental results. For comparison, the signals in the case of 150 µJ and 260 µJ have been multiplied by factor of 20 and 4, respectively. (b) calculated results. The THz energy is obtained at r=12cm by integration for a detector radius of 2cm. The THz energy for the emitters with different length are not to the same scale.

Metrics