Abstract

Today, with quality becoming increasingly important, each product requires three-dimensional in-line quality control. On the other hand, the 3D reconstruction of transparent objects is a very difficult problem in computer vision due to transparency and specularity of the surface. This paper proposes a new method, called Scanning From Heating (SFH), to determine the surface shape of transparent objects using laser surface heating and thermal imaging. Furthermore, the application to transparent glass is discussed and results on different surface shapes are presented.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Ihrke, K. N. Kutulakos, H. P. A. Lensch, M. Magnor, and W. Heidrich, "State of the Art in Transparent and Specular Object Reconstruction," in STAR Proc. of Eurographics, pp. 87-108 (2008).
  2. S. Hata, Y. Saitoh, S. Kumamura, and K. Kaida, "Shape extraction of transparent object using genetic algorithm," in Pattern Recognition, 1996., Proceedings of the 13th International Conference on, pp. 684-688 (1996).
  3. M. Ben-Ezra and S. Nayar, "What does motion reveal about transparency?" in Ninth IEEE International Conference on Computer Vision, vol. 2, pp. 1025-1032 (2003).
  4. S. Agarwal, S. P. Mallick, D. Kriegman, and S. Belongie, "On refractive optical flow," in ECCV’04, 8th European Conference on Computer Vision, pp. 483-494 (2004).
  5. K. Kutulakos and E. Steger, "A theory of refractive and specular 3D shape by light-path triangulation," in Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, vol. 2, pp. 1448-1455 (2005).
  6. D. Miyazaki and K. Ikeuchi, "Inverse polarization raytracing: estimating surface shapes of transparent objects," in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 2, pp. 910-917 (2005).
  7. D. Miyazaki, M. Saito, Y. Sato, and K. Ikeuchi, "Determining surface orientations of transparent objects based on polarization degrees in visible and infrared wavelengths," J. Opt. Soc. Am. A 19, 687-694 (2002).
    [CrossRef]
  8. F. Bernardini and H. Rushmeier, "The 3D Model Acquisition Pipeline," in Computer Graphics Forum, vol. 21, pp. 149-172 (2002).
  9. M. Bertozzi, E. Binelli, A. Broggi, and M. Rose, "Stereo Vision-based approaches for Pedestrian Detection," in CVPR Workshops, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 16 (2005).
  10. X. Maldague, Nondestructive Evaluation of Materials by Infrared Thermography (Springer-Verlag, London, 1993).
    [CrossRef]
  11. J. F. Pelletier and X. Maldague, "Shape from heating: a two-dimensional approach for shape extraction in infrared images," Opt. Eng. 36, 370-375 (1997).
    [CrossRef]
  12. D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach (Prentice Hall, 2003).
  13. J. Phalippou, "Verres. Propriétés et applications," in Techniques de l’ing’enieur. Sciences fondamentales, vol. AF4, pp. F3601.1-AF3601.19 (2001).
  14. J. E. Shelby, Introduction to glass science and technology (Royal Society of Chemistry, Cambridge, 2005).
  15. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Taylor & Francis, 2002).
  16. G. Gaussorgues and S. Chomet, Infrared Thermography (Springer, 1994).
  17. J. Jiao and X. Wang, "A numerical simulation of machining glass by dual CO2-laser beams," Opt.Laser Technol. 40, 297-301 (2008).
    [CrossRef]

2008 (1)

J. Jiao and X. Wang, "A numerical simulation of machining glass by dual CO2-laser beams," Opt.Laser Technol. 40, 297-301 (2008).
[CrossRef]

2002 (1)

1997 (1)

J. F. Pelletier and X. Maldague, "Shape from heating: a two-dimensional approach for shape extraction in infrared images," Opt. Eng. 36, 370-375 (1997).
[CrossRef]

Ikeuchi, K.

Jiao, J.

J. Jiao and X. Wang, "A numerical simulation of machining glass by dual CO2-laser beams," Opt.Laser Technol. 40, 297-301 (2008).
[CrossRef]

Maldague, X.

J. F. Pelletier and X. Maldague, "Shape from heating: a two-dimensional approach for shape extraction in infrared images," Opt. Eng. 36, 370-375 (1997).
[CrossRef]

Miyazaki, D.

Pelletier, J. F.

J. F. Pelletier and X. Maldague, "Shape from heating: a two-dimensional approach for shape extraction in infrared images," Opt. Eng. 36, 370-375 (1997).
[CrossRef]

Saito, M.

Sato, Y.

Wang, X.

J. Jiao and X. Wang, "A numerical simulation of machining glass by dual CO2-laser beams," Opt.Laser Technol. 40, 297-301 (2008).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Eng. (1)

J. F. Pelletier and X. Maldague, "Shape from heating: a two-dimensional approach for shape extraction in infrared images," Opt. Eng. 36, 370-375 (1997).
[CrossRef]

Opt. Laser Technol. (1)

J. Jiao and X. Wang, "A numerical simulation of machining glass by dual CO2-laser beams," Opt.Laser Technol. 40, 297-301 (2008).
[CrossRef]

Other (14)

D. A. Forsyth and J. Ponce, Computer Vision: A Modern Approach (Prentice Hall, 2003).

J. Phalippou, "Verres. Propriétés et applications," in Techniques de l’ing’enieur. Sciences fondamentales, vol. AF4, pp. F3601.1-AF3601.19 (2001).

J. E. Shelby, Introduction to glass science and technology (Royal Society of Chemistry, Cambridge, 2005).

R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer (Taylor & Francis, 2002).

G. Gaussorgues and S. Chomet, Infrared Thermography (Springer, 1994).

F. Bernardini and H. Rushmeier, "The 3D Model Acquisition Pipeline," in Computer Graphics Forum, vol. 21, pp. 149-172 (2002).

M. Bertozzi, E. Binelli, A. Broggi, and M. Rose, "Stereo Vision-based approaches for Pedestrian Detection," in CVPR Workshops, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 16 (2005).

X. Maldague, Nondestructive Evaluation of Materials by Infrared Thermography (Springer-Verlag, London, 1993).
[CrossRef]

I. Ihrke, K. N. Kutulakos, H. P. A. Lensch, M. Magnor, and W. Heidrich, "State of the Art in Transparent and Specular Object Reconstruction," in STAR Proc. of Eurographics, pp. 87-108 (2008).

S. Hata, Y. Saitoh, S. Kumamura, and K. Kaida, "Shape extraction of transparent object using genetic algorithm," in Pattern Recognition, 1996., Proceedings of the 13th International Conference on, pp. 684-688 (1996).

M. Ben-Ezra and S. Nayar, "What does motion reveal about transparency?" in Ninth IEEE International Conference on Computer Vision, vol. 2, pp. 1025-1032 (2003).

S. Agarwal, S. P. Mallick, D. Kriegman, and S. Belongie, "On refractive optical flow," in ECCV’04, 8th European Conference on Computer Vision, pp. 483-494 (2004).

K. Kutulakos and E. Steger, "A theory of refractive and specular 3D shape by light-path triangulation," in Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, vol. 2, pp. 1448-1455 (2005).

D. Miyazaki and K. Ikeuchi, "Inverse polarization raytracing: estimating surface shapes of transparent objects," in Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 2, pp. 910-917 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

(a) Transparent glass bottle. (b) 3D reconstruction by Minolta VI-910 Non Contact 3D Digitizer.

Fig. 2.
Fig. 2.

Scanning From Heating method.

Fig. 3.
Fig. 3.

Evolution of the absorption index of glass depending on the wavelength [13].

Fig. 4.
Fig. 4.

Transmission of light as a percentage in the infrared domain of commonly used glasses [14].

Fig. 5.
Fig. 5.

(a) Transparent glass bottle in front of an infrared heat source. (b) Image taken with a long wave infrared camera sensitive to 8–13µm.

Fig. 6.
Fig. 6.

Emissivity of a dielectric sphere [16].

Fig. 7.
Fig. 7.

(a) XY positioning system. (b) CO2 laser and IR camera, fixed on the positioning system.

Fig. 8.
Fig. 8.

Heating model.

Fig. 9.
Fig. 9.

Experimental results compared to the heating model.

Fig. 10.
Fig. 10.

Result of Gaussian filter and maxima detection on the thermal image.

Fig. 11.
Fig. 11.

(a) Reconstruction of a glass plate by the SFH method. (b) Histogram of the deviation between the results and a perfect plane.

Fig. 12.
Fig. 12.

(a) Glass window used in the automotive industry. (b) Reconstruction of the glass window by a probe scanner. (c) Reconstruction of the glass window by a probe scanner, partially compared to the reconstruction by SFH method. (d) Histogram of the difference between two reconstructions.

Fig. 13.
Fig. 13.

(a) Transparent plastic bottle. (b) Reconstruction obtained by the SFH method. (c) Powdered plastic bottle. (d) Reconstruction of powdered bottle obtained by a Minolta VI-910 Non Contact 3D Digitizer. (e) Histogram of the difference between the two reconstruction. (f) 3D representation of the difference between the two reconstructions.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ΔZ=Z2Z1=k . (Xc2Xc1)2+(Yc2Yc1)2
II0=exp (αx)
α=4πλK(λ)
ε(λ,θ,φ,TA)=i(λ,θ,φ,TA)ib(λ,θ,φ,TA)
I(x,y,z,t)=P0πr2exp((xvt)2+y2r2)δ(z)

Metrics