Abstract

We demonstrate high confinement, low-loss silicon nitride ring resonators with intrinsic quality factor (Q) of 3∗106 operating in the telecommunication C-band. We measure the scattering and absorption losses to be below 0.065dB/cm and 0.055dB/cm, respectively.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
    [CrossRef]
  2. J. N. Milgram, J. Wojcik, P. Mascher, and A. P. Knights, “Optically pumped Si nanocrystal emitter integrated with low loss silicon nitride waveguides,” Opt. Express 15(22), 14679–14688 (2007).
    [CrossRef]
  3. S. Gaugiran, S. Gétin, J. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
    [CrossRef]
  4. A. Serpengüzel, “Amorphous silicon nitride microcavities,” J. Opt. Soc. Am. B 18(7), 989–993 (2001).
    [CrossRef]
  5. N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
    [CrossRef]
  6. C. A. Barrios, B. Sánchez, K. B. Gylfason, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform,” Opt. Express 15(11), 6846–6856 (2007).
    [CrossRef]
  7. K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
    [CrossRef]
  8. L. Vivien, D. Marris-Morini, A. Griol, K. B. Gylfason, D. Hill, J. Alvarez, H. Sohlström, J. Hurtado, D. Bouville, and E. Cassan, “Vertical multiple-slot waveguide ring resonators in silicon nitride,” Opt. Express 16(22), 17237–17242 (2008).
    [CrossRef]
  9. M. Shaw, J. Guo, A. Vawter, S. Habermehl, and C. Sullivan, “Fabrication techniques for low loss silicon nitride waveguides,” Proc. SPIE 5720, 109 (2005).
    [CrossRef]
  10. J. Guo, M. J. Shaw, G. A. Vawter, P. Esherick, G. R. Hadley, and C. T. Sullivan, “High-Q integrated on-chip micro-ring resonator,” in Proc. 17th Annu. Meeting IEEE/LEOS, 2, pp. 745, (2004).
  11. E. Shah Hosseini, S. Yegnanarayanan, M. Soltani, and A. Adibi, “Ultra-High Quality Factor Microdisk Resonators for Chip-Scale Visible Integrated Photonics,” in Frontiers in Optics, FMG4 (2008).
  12. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
    [CrossRef]
  13. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [CrossRef]
  14. M. Borselli, T. J. Johnson, and O. Painter, “Accurate measurement of scattering and absorption loss in microphotonic devices,” Opt. Lett. 32(20), 2954–2956 (2007).
    [CrossRef]
  15. P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
    [CrossRef]

2008 (4)

2007 (3)

2005 (3)

2004 (1)

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

2003 (1)

2001 (1)

Aimez, V.

Alic, N.

Almeida, V. R.

Alvarez, J.

Barclay, P.

Barrios, C. A.

Bellutti, P.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Borselli, M.

Bouville, D.

Casquel, R.

Cassan, E.

Charette, P.

Chatelain, F.

Cluzel, B.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[CrossRef]

Colas, G.

Crivellari, M.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Daldosso, N.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

de Fornel, F.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[CrossRef]

Delamadeleine, E.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[CrossRef]

Dérouard, J.

Fainman, Y.

Fedeli, J.

Foubert, K.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[CrossRef]

Fuchs, A.

Gaugiran, S.

Gétin, S.

Gorin, A.

Griol, A.

Grondin, E.

Guo, J.

M. Shaw, J. Guo, A. Vawter, S. Habermehl, and C. Sullivan, “Fabrication techniques for low loss silicon nitride waveguides,” Proc. SPIE 5720, 109 (2005).
[CrossRef]

Gylfason, K. B.

Habermehl, S.

M. Shaw, J. Guo, A. Vawter, S. Habermehl, and C. Sullivan, “Fabrication techniques for low loss silicon nitride waveguides,” Proc. SPIE 5720, 109 (2005).
[CrossRef]

Hadji, E.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[CrossRef]

Hill, D.

Holgado, M.

Hurtado, J.

Ikeda, K.

Jaouad, A.

Johnson, T. J.

Knights, A. P.

Kompocholis, C.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Lalouat, L.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[CrossRef]

Lipson, M.

Lui, A.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Marris-Morini, D.

Mascher, P.

Melchiorri, M.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Milgram, J. N.

Painter, O.

Panepucci, R. R.

Pavesi, L.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Peyrade, D.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[CrossRef]

Picard, E.

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[CrossRef]

Pucker, G.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Riboli, F.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Sánchez, B.

Saperstein, R. E.

Sbrana, F.

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Serpengüzel, A.

Shaw, M.

M. Shaw, J. Guo, A. Vawter, S. Habermehl, and C. Sullivan, “Fabrication techniques for low loss silicon nitride waveguides,” Proc. SPIE 5720, 109 (2005).
[CrossRef]

Sohlström, H.

Srinivasan, K.

Sullivan, C.

M. Shaw, J. Guo, A. Vawter, S. Habermehl, and C. Sullivan, “Fabrication techniques for low loss silicon nitride waveguides,” Proc. SPIE 5720, 109 (2005).
[CrossRef]

Vawter, A.

M. Shaw, J. Guo, A. Vawter, S. Habermehl, and C. Sullivan, “Fabrication techniques for low loss silicon nitride waveguides,” Proc. SPIE 5720, 109 (2005).
[CrossRef]

Vivien, L.

Wojcik, J.

Appl. Phys. Lett. (1)

K. Foubert, L. Lalouat, B. Cluzel, E. Picard, D. Peyrade, E. Delamadeleine, F. de Fornel, and E. Hadji, “Near-field modal microscopy of subwavelength light confinement in multimode silicon slot waveguides,” Appl. Phys. Lett. 93(25), 251103 (2008).
[CrossRef]

J. Opt. Soc. Am. B (1)

Mater. Sci. Semicond. Process. (1)

N. Daldosso, M. Melchiorri, F. Riboli, F. Sbrana, L. Pavesi, G. Pucker, C. Kompocholis, M. Crivellari, P. Bellutti, and A. Lui, “Fabrication and optical characterization of thin two-dimensional Si 3N4 waveguides,” Mater. Sci. Semicond. Process. 7(4-6), 453–458 (2004).
[CrossRef]

Opt. Express (7)

C. A. Barrios, B. Sánchez, K. B. Gylfason, A. Griol, H. Sohlström, M. Holgado, and R. Casquel, “Demonstration of slot-waveguide structures on silicon nitride / silicon oxide platform,” Opt. Express 15(11), 6846–6856 (2007).
[CrossRef]

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008).
[CrossRef]

J. N. Milgram, J. Wojcik, P. Mascher, and A. P. Knights, “Optically pumped Si nanocrystal emitter integrated with low loss silicon nitride waveguides,” Opt. Express 15(22), 14679–14688 (2007).
[CrossRef]

S. Gaugiran, S. Gétin, J. Fedeli, G. Colas, A. Fuchs, F. Chatelain, and J. Dérouard, “Optical manipulation of microparticles and cells on silicon nitride waveguides,” Opt. Express 13(18), 6956–6963 (2005).
[CrossRef]

L. Vivien, D. Marris-Morini, A. Griol, K. B. Gylfason, D. Hill, J. Alvarez, H. Sohlström, J. Hurtado, D. Bouville, and E. Cassan, “Vertical multiple-slot waveguide ring resonators in silicon nitride,” Opt. Express 16(22), 17237–17242 (2008).
[CrossRef]

A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008).
[CrossRef]

P. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

M. Shaw, J. Guo, A. Vawter, S. Habermehl, and C. Sullivan, “Fabrication techniques for low loss silicon nitride waveguides,” Proc. SPIE 5720, 109 (2005).
[CrossRef]

Other (2)

J. Guo, M. J. Shaw, G. A. Vawter, P. Esherick, G. R. Hadley, and C. T. Sullivan, “High-Q integrated on-chip micro-ring resonator,” in Proc. 17th Annu. Meeting IEEE/LEOS, 2, pp. 745, (2004).

E. Shah Hosseini, S. Yegnanarayanan, M. Soltani, and A. Adibi, “Ultra-High Quality Factor Microdisk Resonators for Chip-Scale Visible Integrated Photonics,” in Frontiers in Optics, FMG4 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Transmission spectrum of multiple 40 µm diameter rings coupled to a waveguide. Inset, high resolution spectrum of a 1.5∗106 coupled Q ring, 5.4∗106 intrinsic Q, 0.065 dB/cm loss in ring.

Fig. 2.
Fig. 2.

(a) A series of ring resonators coupled to a single waveguide. The resonators have slightly different radii to distinguish their transmission spectra. (b) SEM micrograph of scattering defects (vertical bars) across a ring resonator inserted to separately measure scattering and absorption losses.

Fig. 3.
Fig. 3.

Shift in the transmission spectra of a waveguide coupled ring with increasing coupled power. Input laser power heats the ring, causing an increase in the refractive index and in turn shifts in the resonance spectrum. The laser power is not sufficient to cause nonlinear absorption hence the Q of the ring does not change, as is evident by the constant extinction ratio across all coupled powers.

Fig. 4.
Fig. 4.

Shift of ring resonance at different coupled power. Rings with scattering defects absorb less of the coupled power and hence have small resonance shift.

Metrics