Abstract

We present a full-range Fourier-domain optical coherence tomography (OCT) system that is capable of acquiring two-dimensional images of living tissue in a single shot. By using line illumination of the sample in combination with a two-dimensional imaging spectrometer, 1040 depth scans are performed simultaneously on a sub-millisecond timescale. Furthermore, we demonstrate an easy and flexible real-time single-shot technique for full-range (complex-conjugate cancelled) OCT imaging that is compatible with both two-dimensional as well as ultrahigh-resolution OCT. By implementing a dispersion imbalance between reference and sample arms of the interferometer, we eliminate the complex-conjugate signal through numerical dispersion compensation, effectively increasing the useful depth range by a factor of two. The system allows us to record 6.7×3.2 mm images at 5 µm depth resolution in 0.2 ms. Data postprocessing requires only 4 s. We demonstrate the capability of our system by imaging the anterior chamber of a mouse eye in vitro, as well as human skin in vivo.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995).
    [PubMed]
  3. W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
    [CrossRef] [PubMed]
  4. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
    [CrossRef] [PubMed]
  5. S. Asrani, M. V. Sarunic, C. Santiago, and J. A. Izatt, "Detailed visualization of the anterior segment using Fourier-domain optical coherence tomography," Arch. Ophthalmol. 126, 765-771 (2008).
    [CrossRef] [PubMed]
  6. J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer, "Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma," J. Biomed. Opt. 9, 292-298 (2004).
    [CrossRef] [PubMed]
  7. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  8. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
    [CrossRef] [PubMed]
  9. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  10. A. F. Zuluaga and R. Richards-Kortum, "Spatially resolved spectral interferometry for determination of subsurface structure," Opt. Lett. 24, 519-521 (1999).
    [CrossRef]
  11. B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, "Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye," Opt. Express 13, 1131-1137 (2005).
    [CrossRef] [PubMed]
  12. Y. Watanabe, K. Yamada, and M. Sato, "Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography," Opt. Express 14, 5201-5209 (2006).
    [CrossRef] [PubMed]
  13. Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, "High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography," Opt. Express 15, 7103-7116 (2007).
    [CrossRef] [PubMed]
  14. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27, 1415-1417 (2002).
    [CrossRef]
  15. E. Gotzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13, 583-594 (2005).
    [CrossRef] [PubMed]
  16. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31, 2426-2428 (2006).
    [CrossRef] [PubMed]
  17. A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006).
    [CrossRef] [PubMed]
  18. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45, 1861-1865 (2006).
    [CrossRef] [PubMed]
  19. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13375-13387 (2007).
    [CrossRef] [PubMed]
  20. B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Express 17, 7-24 (2009).
    [CrossRef] [PubMed]
  21. B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain OCT," Proc. SPIE 7168, 7168 (2009).
  22. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
    [CrossRef]
  23. B. J. Davis, T. S. Ralston, D. L. Marks, S. A. Boppart, and P. S. Carney, "Autocorrelation artifacts in optical coherence tomography and interferometric synthetic aperture microscopy," Opt. Lett. 32, 1441-1443 (2007).
    [CrossRef] [PubMed]
  24. M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
    [CrossRef] [PubMed]
  25. B. Cense, N. A. Nassif, T. Chen, M. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
    [CrossRef] [PubMed]
  26. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
    [CrossRef] [PubMed]
  27. C. Dorrer, "Influence of the calibration of the detector in spectral interferometry," J. Opt. Soc. Am. B 16, 1160-1168 (1999).
    [CrossRef]
  28. C. Dorrer, N. Belabas, J. P. Likforman, and M. Joffre, "Spectral resolution and sampling issues in Fouriertransform spectral interferometry," J. Opt. Soc. Am. B 17, 1795-1802 (2000).
    [CrossRef]
  29. M. Takeda, H. Ina, and S. Kobayashi, "Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry," J. Opt. Soc. Am. 72, 156 (1982).
    [CrossRef]
  30. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,", J. Biomed. Opt. 12, 041205 (2007).
    [CrossRef] [PubMed]
  31. M. Lazebnik, D. L. Marks, K. Potgieter, R. Gillette, and S. A. Boppart, "Functional optical coherence tomography for detecting neural activity through scattering changes," Opt. Lett. 28, 1218-1220 (2003).
    [CrossRef] [PubMed]
  32. T. Akkin, C. Joo, and J. F. de Boer, "Depth-Resolved Measurement of Transient Structural Changes during Action Potential Propagation," Biophys. J. 93, 1347-1353 (2007).
    [CrossRef] [PubMed]

2009 (2)

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain OCT," Proc. SPIE 7168, 7168 (2009).

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Express 17, 7-24 (2009).
[CrossRef] [PubMed]

2008 (1)

S. Asrani, M. V. Sarunic, C. Santiago, and J. A. Izatt, "Detailed visualization of the anterior segment using Fourier-domain optical coherence tomography," Arch. Ophthalmol. 126, 765-771 (2008).
[CrossRef] [PubMed]

2007 (6)

2006 (4)

2005 (2)

2004 (4)

2003 (4)

2002 (1)

2001 (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

2000 (1)

1999 (2)

1995 (2)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1982 (1)

Akiba, M.

Akkin, T.

T. Akkin, C. Joo, and J. F. de Boer, "Depth-Resolved Measurement of Transient Structural Changes during Action Potential Propagation," Biophys. J. 93, 1347-1353 (2007).
[CrossRef] [PubMed]

Aoki, G.

Applegate, B. E.

Asrani, S.

S. Asrani, M. V. Sarunic, C. Santiago, and J. A. Izatt, "Detailed visualization of the anterior segment using Fourier-domain optical coherence tomography," Arch. Ophthalmol. 126, 765-771 (2008).
[CrossRef] [PubMed]

Bachmann, A. H.

Baumann, B.

Belabas, N.

Boppart, S. A.

Boppart, S.A.

Bouma, B. E.

Carney, P. S.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, T.

Chen, T. C.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,", J. Biomed. Opt. 12, 041205 (2007).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef] [PubMed]

Davis, B. J.

de Boer, J. F.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,", J. Biomed. Opt. 12, 041205 (2007).
[CrossRef] [PubMed]

T. Akkin, C. Joo, and J. F. de Boer, "Depth-Resolved Measurement of Transient Structural Changes during Action Potential Propagation," Biophys. J. 93, 1347-1353 (2007).
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. Chen, M. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
[CrossRef] [PubMed]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef] [PubMed]

J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer, "Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma," J. Biomed. Opt. 9, 292-298 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, "Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography," Opt. Lett. 28, 2067-2069 (2003).
[CrossRef] [PubMed]

Dorrer, C.

Drexler, W.

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Express 17, 7-24 (2009).
[CrossRef] [PubMed]

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain OCT," Proc. SPIE 7168, 7168 (2009).

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Duker, J. S.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Endo, T.

Fercher, A. F.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J.G.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

Ghanta, R. K.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Gillette, R.

Gotzinger, E.

Götzinger, E.

Grajciar, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hermann, B.

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Express 17, 7-24 (2009).
[CrossRef] [PubMed]

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain OCT," Proc. SPIE 7168, 7168 (2009).

Hitzenberger, C. K.

Hofer, B.

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Express 17, 7-24 (2009).
[CrossRef] [PubMed]

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain OCT," Proc. SPIE 7168, 7168 (2009).

Hong, Y.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ina, H.

Itoh, M.

Izatt, J. A.

S. Asrani, M. V. Sarunic, C. Santiago, and J. A. Izatt, "Detailed visualization of the anterior segment using Fourier-domain optical coherence tomography," Arch. Ophthalmol. 126, 765-771 (2008).
[CrossRef] [PubMed]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31, 2426-2428 (2006).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

Joffre, M.

Joo, C.

T. Akkin, C. Joo, and J. F. de Boer, "Depth-Resolved Measurement of Transient Structural Changes during Action Potential Propagation," Biophys. J. 93, 1347-1353 (2007).
[CrossRef] [PubMed]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Kartner, F. X.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Ko, T. H.

Kobayashi, S.

Kowalczyk, A.

Lasser, T.

A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006).
[CrossRef] [PubMed]

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Lazebnik, M.

Leitgeb, R.

Leitgeb, R. A.

Likforman, J. P.

Lin, C. P.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Makita, S.

Marks, D. L.

Matz, G.

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Express 17, 7-24 (2009).
[CrossRef] [PubMed]

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain OCT," Proc. SPIE 7168, 7168 (2009).

Miura, M.

Morgner, U.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Mujat, M.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,", J. Biomed. Opt. 12, 041205 (2007).
[CrossRef] [PubMed]

Nakamura, Y.

Nassif, N. A.

Neel, V.

J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer, "Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma," J. Biomed. Opt. 9, 292-298 (2004).
[CrossRef] [PubMed]

Park, B. H.

Pierce, M.

Pierce, M. C.

Pircher, M.

Potgieter, K.

Povazay, B.

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Express 17, 7-24 (2009).
[CrossRef] [PubMed]

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain OCT," Proc. SPIE 7168, 7168 (2009).

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Puliafito, C.A.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

Ralston, T. S.

Reichel, E.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

Richards-Kortum, R.

Santiago, C.

S. Asrani, M. V. Sarunic, C. Santiago, and J. A. Izatt, "Detailed visualization of the anterior segment using Fourier-domain optical coherence tomography," Arch. Ophthalmol. 126, 765-771 (2008).
[CrossRef] [PubMed]

Sarunic, M. V.

S. Asrani, M. V. Sarunic, C. Santiago, and J. A. Izatt, "Detailed visualization of the anterior segment using Fourier-domain optical coherence tomography," Arch. Ophthalmol. 126, 765-771 (2008).
[CrossRef] [PubMed]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31, 2426-2428 (2006).
[CrossRef] [PubMed]

Sato, M.

Schuman, J. S.

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

Schuman, J.S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Strasswimmer, J.

J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer, "Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma," J. Biomed. Opt. 9, 292-298 (2004).
[CrossRef] [PubMed]

Swanson, E. A.

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Takeda, M.

Tearney, G. J.

Unterhuber, A.

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain OCT," Proc. SPIE 7168, 7168 (2009).

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Express 17, 7-24 (2009).
[CrossRef] [PubMed]

Watanabe, Y.

Wojtkowski, M.

Yamada, K.

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yun, S. H.

Zuluaga, A. F.

Appl. Opt. (1)

Arch. Ophthalmol. (1)

S. Asrani, M. V. Sarunic, C. Santiago, and J. A. Izatt, "Detailed visualization of the anterior segment using Fourier-domain optical coherence tomography," Arch. Ophthalmol. 126, 765-771 (2008).
[CrossRef] [PubMed]

Biophys. J. (1)

T. Akkin, C. Joo, and J. F. de Boer, "Depth-Resolved Measurement of Transient Structural Changes during Action Potential Propagation," Biophys. J. 93, 1347-1353 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt. (2)

J. Strasswimmer, M. C. Pierce, B. H. Park, V. Neel, and J. F. de Boer, "Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma," J. Biomed. Opt. 9, 292-298 (2004).
[CrossRef] [PubMed]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, "Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,", J. Biomed. Opt. 12, 041205 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (2)

Nat. Med. (1)

W. Drexler, U. Morgner, R. K. Ghanta, F. X. Kartner, J. S. Schuman, and J. G. Fujimoto, "Ultrahigh-resolution ophthalmic optical coherence tomography," Nat. Med. 7, 502-507 (2001).
[CrossRef] [PubMed]

Ophthalmology (1)

C. A. Puliafito, M. R. Hee, C. P. Lin, E. Reichel, J. S. Schuman, J. S. Duker, J. A. Izatt, E. A. Swanson, and J. G. Fujimoto, "Imaging of macular diseases with optical coherence tomography," Ophthalmology 102, 217-229 (1995).
[PubMed]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Opt. Express (12)

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, and J. F. de Boer, "In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve," Opt. Express 12, 367-376 (2004).
[CrossRef] [PubMed]

M. Wojtkowski, V. J. Srinivasan, T. H. Ko, J. G. Fujimoto, A. Kowalczyk, and J. S. Duker, "Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation," Opt. Express 12, 2404-2422 (2004).
[CrossRef] [PubMed]

B. Cense, N. A. Nassif, T. Chen, M. Pierce, S. H. Yun, B. H. Park, B. E. Bouma, G. J. Tearney, and J. F. de Boer, "Ultrahigh-resolution high-speed retinal imaging using spectral-domain optical coherence tomography," Opt. Express 12, 2435-2447 (2004).
[CrossRef] [PubMed]

E. Gotzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13, 583-594 (2005).
[CrossRef] [PubMed]

B. Grajciar, M. Pircher, A. F. Fercher, and R. A. Leitgeb, "Parallel Fourier domain optical coherence tomography for in vivo measurement of the human eye," Opt. Express 13, 1131-1137 (2005).
[CrossRef] [PubMed]

A. H. Bachmann, R. A. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14, 1487-1496 (2006).
[CrossRef] [PubMed]

Y. Watanabe, K. Yamada, and M. Sato, "Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography," Opt. Express 14, 5201-5209 (2006).
[CrossRef] [PubMed]

Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, and T. Yatagai, "In vivo high-contrast imaging of deep posterior eye by 1-μm swept source optical coherence tomography and scattering optical coherence angiography," Opt. Express 15, 6121-6139 (2007).
[CrossRef] [PubMed]

Y. Nakamura, S. Makita, M. Yamanari, M. Itoh, T. Yatagai, and Y. Yasuno, "High-speed three-dimensional human retinal imaging by line-field spectral domain optical coherence tomography," Opt. Express 15, 7103-7116 (2007).
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15, 13375-13387 (2007).
[CrossRef] [PubMed]

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain optical coherence tomography," Opt. Express 17, 7-24 (2009).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11, 889-894 (2003).
[CrossRef] [PubMed]

Opt. Lett. (6)

Proc. SPIE (1)

B. Hofer, B. Povazay, B. Hermann, A. Unterhuber, G. Matz, and W. Drexler, "Dispersion encoded full range frequency domain OCT," Proc. SPIE 7168, 7168 (2009).

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, "Optical coherence tomography - principles and applications," Rep. Prog. Phys. 66, 239-303 (2003).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic drawing of the single-shot 2D-OCT system. In the top view, the beam is focused on the sample, and a spectral interferogram is recorded from the scattered light at this position. In the side view, a collimated beam illuminates the sample, and the sample is imaged onto the CCD camera. The dashed lines indicate the imaging rays. SMF: single-mode fiber, VND: variable neutral-density filter, CL: cylindrical lens, BS: 50/50 beamsplitter, DM: dispersive material, TG: transmission grating, CCD: 1392×1040 pixel CCD camera.

Fig. 2.
Fig. 2.

Fourier transforms of measured spectral interferograms with a mirror as the sample object. a) The effect of dispersion on the OCT signal from a single scatterer. The addition of increasing amounts of dispersive material in one interferometer arm induces a pronounced broadening of both the observed signal and its complex conjugate. b) Numerical dispersion compensation retrieves a signal peak of Fourier-limited width, while the complex conjugate broadens by an additional factor of two. c) Demonstration of the complex-conjugate cancellation (CCC) algorithm. The narrow compensated signal peak is detected and set to zero. Subsequently, the phase of the complex conjugate peak is numerically compensated, leading to a single narrow peak without mirror image. d) System sensitivity as a function of depth. The slight asymmetry is due to the system alignment, while the decrease at higher depths is due to the discrete nature of our pixel-based spectrometer and the finite Rayleigh range of our imaging system.

Fig. 3.
Fig. 3.

a) USAF 1951 resolution test target, the elements of Group 5 are highlighted by the red box. b) OCT recording of the Group 5 elements. c) Transverse intensity profile of the Group 5 elements shown in b. The smallest elements are well-resolved. d) Image of a stack of three coverslips with random air space in between, used for axial resolution measurement. e) Single A-scan taken from the coverslip-image. All peaks have a Fourier-transform-limited width of 5 µm.

Fig. 4.
Fig. 4.

Flow diagram of the procedure for simultaneous calibration of spectrometer error and dispersion imbalance.

Fig. 5.
Fig. 5.

a) Single-shot 2D-OCT image of a human fingertip in vivo. b) Single-shot 2D-OCT image of a mouse eye anterior chamber in vitro. Both measurements were acquired in 0.2 ms. The image dimensions are 5.8×1.2 mm for a), and 2.7×1.2 mm for b), respectively.

Fig. 6.
Fig. 6.

Demonstration of single-shot full-range 2D-OCT using dispersion compensation. a) Depth image without dispersion compensation. b) Depth image with dispersion compensation. The image appears sharp, while the mirror image is broadened by an additional factor of two. c) Depth image with both dispersion compensation and the CCC algorithm. Over 40 dB suppression of the mirror image is achieved. Image size is 3.0×3.2 mm (w×h), the dashed line indicates z=0. The intensity scale is identical for all three images.

Fig. 7.
Fig. 7.

Single-shot image around zero path length difference (z=0 indicated by the dashed line). a) Image with only dispersion compensation. The mirror-image background is still clearly visible. b) Image with the CCC algorithm. The mirror image background is strongly suppressed, providing a high-contrast full-range image. Image size is 2.8×2.4mm (w×h).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I(ω)=Er2 + Es2 + 2 ErEs cos (ωzc+φd(ω)).
I(ω)=Er2+Es2 + Er* Es eiωzc+iφd(ω) + Er Es* eiωzciφd(ω) .
I(ω)=Er*Eseiωzc+ErEs*eiωzc2iφd(ω).
𝔍[In(Aeiθ)]=𝔍[lnA+iθ]=θ
ωn=Δ ωl n + Δ ωnl (n),
θn=(Δωln+Δωnl(n))zc+φd(n).
Δ θn=Δ ωnl (n)zc+φd(n),

Metrics