Abstract

We are showing that a 20nm lithography resolution is theoretically feasible at a 193nm illumination wavelength if employing aluminum (Al) superlens structure with index matching layer. It is illustrated that transmissivity of evanescent waves for certain wavevector bands can be enhanced by an index matching layer. It is further shown a minimal resolution of ~λ/10 can be achieved by appropriately engineering mask material and superlens structure. A depth of focus of several nanometers is predicted to be possible for a periodic structure with 20nm half pitch. Assistant features were adopted in superlens structure to successfully suppress the side lobes and resolve a 20nm two-slit structure.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Silverman, "Extreme ultraviolet lithography: overview and development status," J. Microlith., Microfab. Microsyst. 4, 011006 (2005).
    [CrossRef]
  2. M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick, and C. G. Willson, "Nanofabrication with step and flash imprint lithography," J. Microlith., Microfab. Microsyst. 4, 011002 (2005).
    [CrossRef]
  3. S. R. J. Brueck, "Optical and interferometric lithography - nanotechnology enablers," Proc. of IEEE 93, 1704-1721 (2005).
    [CrossRef]
  4. M. M. Alkaisi, R. J. Blaikie, and S. J. Mcnab, "Nanolithography in the evanescent near field," Adv. Mater. 13, 877-887 (2001).
    [CrossRef]
  5. V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. USP 10, 509-514 (1968).
    [CrossRef]
  6. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
    [CrossRef] [PubMed]
  7. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
    [CrossRef] [PubMed]
  8. H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
    [CrossRef]
  9. W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
    [CrossRef]
  10. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  11. D. M. Roessler, D. R. Huffman, "Magnesium oxide (MgO)," in Handbook of Optical Constants of Solid II, E. D. Palik, ed. (Academic Press, 1991).
  12. C. C. Katsidis and D. I. Siapkas, "General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference," Appl. Opt. 41, 3978-3987 (2002).
    [CrossRef] [PubMed]
  13. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewaki, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 22, 5271-5283 (1998).
    [CrossRef]
  14. S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
    [CrossRef]
  15. H. J. Levinson, Principles of lithography, (SPIE Press, 2004).
  16. M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, "Transfer printing by kinetic control of adhesion to an elastomeric stamp," Nat. Mater. 5, 33-38 (2006).
    [CrossRef]

2006

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, "Transfer printing by kinetic control of adhesion to an elastomeric stamp," Nat. Mater. 5, 33-38 (2006).
[CrossRef]

2005

S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
[CrossRef]

P. J. Silverman, "Extreme ultraviolet lithography: overview and development status," J. Microlith., Microfab. Microsyst. 4, 011006 (2005).
[CrossRef]

M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick, and C. G. Willson, "Nanofabrication with step and flash imprint lithography," J. Microlith., Microfab. Microsyst. 4, 011002 (2005).
[CrossRef]

S. R. J. Brueck, "Optical and interferometric lithography - nanotechnology enablers," Proc. of IEEE 93, 1704-1721 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

2004

W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
[CrossRef]

2002

2001

M. M. Alkaisi, R. J. Blaikie, and S. J. Mcnab, "Nanolithography in the evanescent near field," Adv. Mater. 13, 877-887 (2001).
[CrossRef]

2000

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

1998

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewaki, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 22, 5271-5283 (1998).
[CrossRef]

1968

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. USP 10, 509-514 (1968).
[CrossRef]

Adesida, I.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, "Transfer printing by kinetic control of adhesion to an elastomeric stamp," Nat. Mater. 5, 33-38 (2006).
[CrossRef]

Alkaisi, M. M.

M. M. Alkaisi, R. J. Blaikie, and S. J. Mcnab, "Nanolithography in the evanescent near field," Adv. Mater. 13, 877-887 (2001).
[CrossRef]

Ambati, M.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
[CrossRef]

Blaikie, R. J.

M. M. Alkaisi, R. J. Blaikie, and S. J. Mcnab, "Nanolithography in the evanescent near field," Adv. Mater. 13, 877-887 (2001).
[CrossRef]

Brueck, S. R. J.

S. R. J. Brueck, "Optical and interferometric lithography - nanotechnology enablers," Proc. of IEEE 93, 1704-1721 (2005).
[CrossRef]

Djurisic, A. B.

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewaki, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 22, 5271-5283 (1998).
[CrossRef]

Durant, S.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
[CrossRef]

Elazar, J. M.

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewaki, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 22, 5271-5283 (1998).
[CrossRef]

Fang, N.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
[CrossRef]

Feng, X.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, "Transfer printing by kinetic control of adhesion to an elastomeric stamp," Nat. Mater. 5, 33-38 (2006).
[CrossRef]

Huang, Y. Y.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, "Transfer printing by kinetic control of adhesion to an elastomeric stamp," Nat. Mater. 5, 33-38 (2006).
[CrossRef]

Johnson, S. C.

M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick, and C. G. Willson, "Nanofabrication with step and flash imprint lithography," J. Microlith., Microfab. Microsyst. 4, 011002 (2005).
[CrossRef]

Katsidis, C. C.

Kumar, V.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, "Transfer printing by kinetic control of adhesion to an elastomeric stamp," Nat. Mater. 5, 33-38 (2006).
[CrossRef]

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Lee, K. J.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, "Transfer printing by kinetic control of adhesion to an elastomeric stamp," Nat. Mater. 5, 33-38 (2006).
[CrossRef]

Majewaki, M. L.

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewaki, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 22, 5271-5283 (1998).
[CrossRef]

Mcnab, S. J.

M. M. Alkaisi, R. J. Blaikie, and S. J. Mcnab, "Nanolithography in the evanescent near field," Adv. Mater. 13, 877-887 (2001).
[CrossRef]

Meitl, M. A.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, "Transfer printing by kinetic control of adhesion to an elastomeric stamp," Nat. Mater. 5, 33-38 (2006).
[CrossRef]

Nuzzo, R. G.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, "Transfer printing by kinetic control of adhesion to an elastomeric stamp," Nat. Mater. 5, 33-38 (2006).
[CrossRef]

Pendry, J. B.

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Rakic, A. D.

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewaki, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 22, 5271-5283 (1998).
[CrossRef]

Ramakrishna, S. A.

S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
[CrossRef]

Resnick, D. J.

M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick, and C. G. Willson, "Nanofabrication with step and flash imprint lithography," J. Microlith., Microfab. Microsyst. 4, 011002 (2005).
[CrossRef]

Rogers, J. A.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, "Transfer printing by kinetic control of adhesion to an elastomeric stamp," Nat. Mater. 5, 33-38 (2006).
[CrossRef]

Siapkas, D. I.

Silverman, P. J.

P. J. Silverman, "Extreme ultraviolet lithography: overview and development status," J. Microlith., Microfab. Microsyst. 4, 011006 (2005).
[CrossRef]

Sreenivasan, S. V.

M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick, and C. G. Willson, "Nanofabrication with step and flash imprint lithography," J. Microlith., Microfab. Microsyst. 4, 011002 (2005).
[CrossRef]

Srituravanich, W.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
[CrossRef]

Stewart, M. D.

M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick, and C. G. Willson, "Nanofabrication with step and flash imprint lithography," J. Microlith., Microfab. Microsyst. 4, 011002 (2005).
[CrossRef]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
[CrossRef]

Veselago, V. G.

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. USP 10, 509-514 (1968).
[CrossRef]

Willson, C. G.

M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick, and C. G. Willson, "Nanofabrication with step and flash imprint lithography," J. Microlith., Microfab. Microsyst. 4, 011002 (2005).
[CrossRef]

Xiong, Y.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Zhang, X.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
[CrossRef]

Zhu, Z.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, "Transfer printing by kinetic control of adhesion to an elastomeric stamp," Nat. Mater. 5, 33-38 (2006).
[CrossRef]

Adv. Mater.

M. M. Alkaisi, R. J. Blaikie, and S. J. Mcnab, "Nanolithography in the evanescent near field," Adv. Mater. 13, 877-887 (2001).
[CrossRef]

Appl. Opt.

C. C. Katsidis and D. I. Siapkas, "General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference," Appl. Opt. 41, 3978-3987 (2002).
[CrossRef] [PubMed]

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewaki, "Optical properties of metallic films for vertical-cavity optoelectronic devices," Appl. Opt. 22, 5271-5283 (1998).
[CrossRef]

J. Microlith., Microfab. Microsyst.

P. J. Silverman, "Extreme ultraviolet lithography: overview and development status," J. Microlith., Microfab. Microsyst. 4, 011006 (2005).
[CrossRef]

M. D. Stewart, S. C. Johnson, S. V. Sreenivasan, D. J. Resnick, and C. G. Willson, "Nanofabrication with step and flash imprint lithography," J. Microlith., Microfab. Microsyst. 4, 011002 (2005).
[CrossRef]

J. Vac. Sci. Technol. B

W. Srituravanich, N. Fang, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Sub-100 nm lithography using ultrashort wavelength of surface plasmons," J. Vac. Sci. Technol. B 22, 3475-3478 (2004).
[CrossRef]

Nat. Mater.

M. A. Meitl, Z. Zhu, V. Kumar, K. J. Lee, X. Feng, Y. Y. Huang, I. Adesida, R. G. Nuzzo, and J. A. Rogers, "Transfer printing by kinetic control of adhesion to an elastomeric stamp," Nat. Mater. 5, 33-38 (2006).
[CrossRef]

New J. Phys.

H. Lee, Y. Xiong, N. Fang, W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Phys. Rev. Lett.

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966-3969 (2000).
[CrossRef] [PubMed]

Proc. of IEEE

S. R. J. Brueck, "Optical and interferometric lithography - nanotechnology enablers," Proc. of IEEE 93, 1704-1721 (2005).
[CrossRef]

Rep. Prog. Phys.

S. A. Ramakrishna, "Physics of negative refractive index materials," Rep. Prog. Phys. 68, 449-521 (2005).
[CrossRef]

Science

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534-537 (2005).
[CrossRef] [PubMed]

Sov. Phys. USP

V. G. Veselago, "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. USP 10, 509-514 (1968).
[CrossRef]

Other

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

D. M. Roessler, D. R. Huffman, "Magnesium oxide (MgO)," in Handbook of Optical Constants of Solid II, E. D. Palik, ed. (Academic Press, 1991).

H. J. Levinson, Principles of lithography, (SPIE Press, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Calculated transmissivity of the multilayer superlens structure. Circle: w/index matching layer. Star: w/o index matching. Dot: diffraction limited. Right: schematics of a 193nm superlens imaging structure, where material stacked, from bottom to top, respectively: quartz substrate, Al mask layer, dielectrics layer (1), index matching layer (2), Al superlens layer (3), spacer layer (4) and photo resist layer (5).

Fig. 2.
Fig. 2.

Total energy density distribution immediately after the Cr and Al mask materials.

Fig. 3.
Fig. 3.

(a) Calculated power distribution of a periodic grating structure with and without an index matching layer. (b): Ex cross-section distribution in the Z direction where 1, 2, 3, 4 and 5 represent mask, SiO2, MgO for top curve/SiO2 for bottom curve, Al and photo resist layer respectively.

Fig. 4.
Fig. 4.

Calculated power distribution of a periodic grating structure with 20nm HP at different image location where legend numbers represent imaging distances from the superlens layer.

Fig. 5.
Fig. 5.

(a). Calculated energy distribution for a 20nm two-slit structure without assistant feature placement. (b). Calculated energy density for a 20nm two-slit structure with assistant feature placement. AFs are 80nm away from the mask center. The slit opening size is 20nm and the spacing between them is 40nm.

Metrics