Abstract

We present a new high spatial resolution sensor for monitoring refractive index variations caused by binding of organic and biological molecules to the metallic surface containing arrays of nanoholes. Signal transduction is provided through detecting the optical phase change in the extraordinary optical transmission (EOT) effected by surface plasmon resonance (SPR). These 2D nanoholes are well suited for the sensor chip format in which high dense integration is readily achievable. While the sensor operates at normal illumination, practical implementation of the sensor is much easier in comparison to the traditional Kretschmann arrangement for SPR sensing. Various design parameters of the device have been studied by simulation. Our results indicate that the scheme has a shot-noise limited sensitivity threshold of 4.37 × 10−9 refractive index units (RIU) and a dynamic range of 0.17 RIU, which compare favorably with typical SPR sensors, particularly in terms of achieving high resolution and wide dynamic range sensor attributes. The phase change is also quite linear over the entire refractive index detection range.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. C. Nice and B. Catimel, “Instrumental biosensors: new perspectives for the analysis of biomolecular interactions,” Bioessays 21(4), 339–352 (1999).
    [CrossRef] [PubMed]
  2. T. Vo-Dinh and B. M. Cullum, “Biosensors and biochips: advances in biological and medical diagnostics,” J. Anal. Chem. 366(6-7), 540–551 (2000).
  3. A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
    [CrossRef]
  4. S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004).
    [CrossRef] [PubMed]
  5. X. L. Yu, D. X. Wang, and Z. B. Yan, “Simulation and analysis of surface plasmon resonance biosensor based on phase detection,” Sens. Actuators B Chem. 91(1-3), 285–290 (2003).
    [CrossRef]
  6. E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
    [CrossRef] [PubMed]
  7. T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003).
    [CrossRef]
  8. A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003).
    [CrossRef] [PubMed]
  9. S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83(5), 836–838 (2003).
    [CrossRef]
  10. A. Krishnan, T. Thio, and ., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 197, 217–233 (2001).
  11. T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999).
    [CrossRef]
  12. S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003).
    [CrossRef]
  13. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
    [CrossRef] [PubMed]
  14. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), 1528–1530 (2006).
    [CrossRef] [PubMed]
  15. X. L. Yu, L. Q. Zhao, H. Jiang, and ., “Immunosensor based on optical heterodyne phase detection,” Sens. Actuators B Chem. 76(1-3), 199–202 (2001).
    [CrossRef]
  16. K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1-3), 167–172 (2002).
    [CrossRef]
  17. C. M. Wua, Z. C. Jian, S. F. Joec, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem. 92(1-2), 133–136 (2003).
    [CrossRef]
  18. S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1-3), 187–191 (1996).
    [CrossRef]
  19. C. Genet, M. P. van Exter, and J. P. Woerdman, “Huygens description of resonance phenomena in subwavelength hole arrays,” J. Opt. Soc. Am. 22(5), 998–1002 (2005).
    [CrossRef]
  20. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
    [CrossRef]
  21. J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
    [CrossRef] [PubMed]
  22. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [CrossRef] [PubMed]
  23. K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmissionthrough subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
    [CrossRef]
  24. K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
    [CrossRef] [PubMed]
  25. C. B. Scruby, and L. E. Drain, Laser ultrasonics techniques and applications (LOP Publishing Ltd, 1990), Chap. 3.
  26. R. L. Rich and D. Myszka, “Survey of the year 2004 commercial optical biosensor literature,” J. Mol. Recognit. 18, 457–478 (2005).
  27. D. K. Kambhampati and W. Knoll, “Surface-plasmon optical techniques, Current Opinion in Colloid & Interface,” Science 4, 273–280 (1999).
  28. J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
    [CrossRef] [PubMed]

2006

2005

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

C. Genet, M. P. van Exter, and J. P. Woerdman, “Huygens description of resonance phenomena in subwavelength hole arrays,” J. Opt. Soc. Am. 22(5), 998–1002 (2005).
[CrossRef]

R. L. Rich and D. Myszka, “Survey of the year 2004 commercial optical biosensor literature,” J. Mol. Recognit. 18, 457–478 (2005).

2004

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmissionthrough subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

S. Y. Wu, H. P. Ho, W. C. Law, C. Lin, and S. K. Kong, “Highly sensitive differential phase-sensitive surface plasmon resonance biosensor based on the Mach-Zehnder configuration,” Opt. Lett. 29(20), 2378–2380 (2004).
[CrossRef] [PubMed]

2003

A. Nahata, R. A. Linke, T. Ishi, and K. Ohashi, “Enhanced nonlinear optical conversion from a periodically nanostructured metal film,” Opt. Lett. 28(6), 423–425 (2003).
[CrossRef] [PubMed]

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83(5), 836–838 (2003).
[CrossRef]

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003).
[CrossRef]

X. L. Yu, D. X. Wang, and Z. B. Yan, “Simulation and analysis of surface plasmon resonance biosensor based on phase detection,” Sens. Actuators B Chem. 91(1-3), 285–290 (2003).
[CrossRef]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003).
[CrossRef]

C. M. Wua, Z. C. Jian, S. F. Joec, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem. 92(1-2), 133–136 (2003).
[CrossRef]

2002

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[CrossRef] [PubMed]

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1-3), 167–172 (2002).
[CrossRef]

2001

A. Krishnan, T. Thio, and ., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 197, 217–233 (2001).

X. L. Yu, L. Q. Zhao, H. Jiang, and ., “Immunosensor based on optical heterodyne phase detection,” Sens. Actuators B Chem. 76(1-3), 199–202 (2001).
[CrossRef]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

2000

T. Vo-Dinh and B. M. Cullum, “Biosensors and biochips: advances in biological and medical diagnostics,” J. Anal. Chem. 366(6-7), 540–551 (2000).

1999

E. C. Nice and B. Catimel, “Instrumental biosensors: new perspectives for the analysis of biomolecular interactions,” Bioessays 21(4), 339–352 (1999).
[CrossRef] [PubMed]

D. K. Kambhampati and W. Knoll, “Surface-plasmon optical techniques, Current Opinion in Colloid & Interface,” Science 4, 273–280 (1999).

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999).
[CrossRef]

1998

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[CrossRef]

1996

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1-3), 187–191 (1996).
[CrossRef]

Alaverdyan, Y.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Altewischer, E.

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[CrossRef] [PubMed]

Brolo, A. G.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Campbell, C. T.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[CrossRef]

Catimel, B.

E. C. Nice and B. Catimel, “Instrumental biosensors: new perspectives for the analysis of biomolecular interactions,” Bioessays 21(4), 339–352 (1999).
[CrossRef] [PubMed]

Chang, L. B.

C. M. Wua, Z. C. Jian, S. F. Joec, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem. 92(1-2), 133–136 (2003).
[CrossRef]

Chen, K. H.

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1-3), 167–172 (2002).
[CrossRef]

Chinowsky, T. M.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[CrossRef]

Coe, J. V.

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003).
[CrossRef]

Cullum, B. M.

T. Vo-Dinh and B. M. Cullum, “Biosensors and biochips: advances in biological and medical diagnostics,” J. Anal. Chem. 366(6-7), 540–551 (2000).

Dahlin, A.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999).
[CrossRef]

Enoch, S.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Fainman, Y.

Garcia-Vidal, F. J.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Genet, C.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Huygens description of resonance phenomena in subwavelength hole arrays,” J. Opt. Soc. Am. 22(5), 998–1002 (2005).
[CrossRef]

Gordon, R.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Grupp, D. E.

Hashizume, J.

S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83(5), 836–838 (2003).
[CrossRef]

Ho, H. P.

Homola, J.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

Höök, F.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Hsu, C. C.

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1-3), 167–172 (2002).
[CrossRef]

Ishi, T.

Jefimovs, K.

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003).
[CrossRef]

Jian, Z. C.

C. M. Wua, Z. C. Jian, S. F. Joec, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem. 92(1-2), 133–136 (2003).
[CrossRef]

Jiang, H.

X. L. Yu, L. Q. Zhao, H. Jiang, and ., “Immunosensor based on optical heterodyne phase detection,” Sens. Actuators B Chem. 76(1-3), 199–202 (2001).
[CrossRef]

Joec, S. F.

C. M. Wua, Z. C. Jian, S. F. Joec, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem. 92(1-2), 133–136 (2003).
[CrossRef]

Johnston, K. S.

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1-3), 187–191 (1996).
[CrossRef]

Jung, L. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[CrossRef]

Käll, M.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Kambhampati, D. K.

D. K. Kambhampati and W. Knoll, “Surface-plasmon optical techniques, Current Opinion in Colloid & Interface,” Science 4, 273–280 (1999).

Kavanagh, K. L.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Kim, T. J.

Knoll, W.

D. K. Kambhampati and W. Knoll, “Surface-plasmon optical techniques, Current Opinion in Colloid & Interface,” Science 4, 273–280 (1999).

Koerkamp, K. J.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Kong, S. K.

Koyama, F.

S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83(5), 836–838 (2003).
[CrossRef]

Krishnan, A.

A. Krishnan, T. Thio, and ., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 197, 217–233 (2001).

Kuipers, L.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmissionthrough subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Law, W. C.

Leathem, B.

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Lezec, H. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999).
[CrossRef]

Lin, C.

Linke, R. A.

Mar, M. N.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[CrossRef]

Martín-Moreno, L.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Myszka, D.

R. L. Rich and D. Myszka, “Survey of the year 2004 commercial optical biosensor literature,” J. Mol. Recognit. 18, 457–478 (2005).

Nahata, A.

Nelson, S. G.

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1-3), 187–191 (1996).
[CrossRef]

Nice, E. C.

E. C. Nice and B. Catimel, “Instrumental biosensors: new perspectives for the analysis of biomolecular interactions,” Bioessays 21(4), 339–352 (1999).
[CrossRef] [PubMed]

Ohashi, K.

Pang, L.

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

Rich, R. L.

R. L. Rich and D. Myszka, “Survey of the year 2004 commercial optical biosensor literature,” J. Mol. Recognit. 18, 457–478 (2005).

Rindzevicius, T.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Rodriguez, K. R.

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003).
[CrossRef]

Rogers, T. M.

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003).
[CrossRef]

Segerink, F. B.

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmissionthrough subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[CrossRef]

Shinada, S.

S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83(5), 836–838 (2003).
[CrossRef]

Stafford, A. D.

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003).
[CrossRef]

Su, D. C.

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1-3), 167–172 (2002).
[CrossRef]

Sutherland, D. S.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Svirko, Y.

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003).
[CrossRef]

Tetz, K. A.

Thio, T.

A. Krishnan, T. Thio, and ., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 197, 217–233 (2001).

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

T. J. Kim, T. Thio, T. W. Ebbesen, D. E. Grupp, and H. J. Lezec, “Control of optical transmission through metals perforated with subwavelength hole arrays,” Opt. Lett. 24(4), 256–258 (1999).
[CrossRef]

Turunen, J.

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003).
[CrossRef]

Vahimaa, P.

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003).
[CrossRef]

Vallius, T.

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003).
[CrossRef]

van der Molen, K. L.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmissionthrough subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[CrossRef]

van Exter, M. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Huygens description of resonance phenomena in subwavelength hole arrays,” J. Opt. Soc. Am. 22(5), 998–1002 (2005).
[CrossRef]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[CrossRef] [PubMed]

van Hulst, N. F.

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmissionthrough subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[CrossRef]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Vo-Dinh, T.

T. Vo-Dinh and B. M. Cullum, “Biosensors and biochips: advances in biological and medical diagnostics,” J. Anal. Chem. 366(6-7), 540–551 (2000).

Wang, D. X.

X. L. Yu, D. X. Wang, and Z. B. Yan, “Simulation and analysis of surface plasmon resonance biosensor based on phase detection,” Sens. Actuators B Chem. 91(1-3), 285–290 (2003).
[CrossRef]

Williams, S. M.

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003).
[CrossRef]

Woerdman, J. P.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Huygens description of resonance phenomena in subwavelength hole arrays,” J. Opt. Soc. Am. 22(5), 998–1002 (2005).
[CrossRef]

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[CrossRef] [PubMed]

Wu, S. Y.

Wua, C. M.

C. M. Wua, Z. C. Jian, S. F. Joec, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem. 92(1-2), 133–136 (2003).
[CrossRef]

Yan, Z. B.

X. L. Yu, D. X. Wang, and Z. B. Yan, “Simulation and analysis of surface plasmon resonance biosensor based on phase detection,” Sens. Actuators B Chem. 91(1-3), 285–290 (2003).
[CrossRef]

Yee, S. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[CrossRef]

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1-3), 187–191 (1996).
[CrossRef]

Yu, X. L.

X. L. Yu, D. X. Wang, and Z. B. Yan, “Simulation and analysis of surface plasmon resonance biosensor based on phase detection,” Sens. Actuators B Chem. 91(1-3), 285–290 (2003).
[CrossRef]

X. L. Yu, L. Q. Zhao, H. Jiang, and ., “Immunosensor based on optical heterodyne phase detection,” Sens. Actuators B Chem. 76(1-3), 199–202 (2001).
[CrossRef]

Zhao, L. Q.

X. L. Yu, L. Q. Zhao, H. Jiang, and ., “Immunosensor based on optical heterodyne phase detection,” Sens. Actuators B Chem. 76(1-3), 199–202 (2001).
[CrossRef]

Anal. Bioanal. Chem.

J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem. 377(3), 528–539 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett.

S. Shinada, J. Hashizume, and F. Koyama, “Surface plasmon resonance on microaperture vertical-cavity surface-emitting laser with metal grating,” Appl. Phys. Lett. 83(5), 836–838 (2003).
[CrossRef]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, “Optical activity in subwavelength-period arrays of chiral metallic particles,” Appl. Phys. Lett. 83(2), 234–236 (2003).
[CrossRef]

K. L. van der Molen, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmissionthrough subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[CrossRef]

Bioessays

E. C. Nice and B. Catimel, “Instrumental biosensors: new perspectives for the analysis of biomolecular interactions,” Bioessays 21(4), 339–352 (1999).
[CrossRef] [PubMed]

J. Anal. Chem.

T. Vo-Dinh and B. M. Cullum, “Biosensors and biochips: advances in biological and medical diagnostics,” J. Anal. Chem. 366(6-7), 540–551 (2000).

J. Mol. Recognit.

R. L. Rich and D. Myszka, “Survey of the year 2004 commercial optical biosensor literature,” J. Mol. Recognit. 18, 457–478 (2005).

J. Opt. Soc. Am.

C. Genet, M. P. van Exter, and J. P. Woerdman, “Huygens description of resonance phenomena in subwavelength hole arrays,” J. Opt. Soc. Am. 22(5), 998–1002 (2005).
[CrossRef]

J. Phys. Chem. B

S. M. Williams, A. D. Stafford, K. R. Rodriguez, T. M. Rogers, and J. V. Coe, “Accessing surface plasmons with Ni microarrays for enhanced IR absorption by monolayers,” J. Phys. Chem. B 107(43), 11871–11879 (2003).
[CrossRef]

Langmuir

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, “Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films,” Langmuir 14(19), 5636–5648 (1998).
[CrossRef]

A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir 20(12), 4813–4815 (2004).
[CrossRef]

Nano Lett.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, “Plasmonic sensing characteristics of single nanometric holes,” Nano Lett. 5(11), 2335–2339 (2005).
[CrossRef] [PubMed]

Nature

E. Altewischer, M. P. van Exter, and J. P. Woerdman, “Plasmon-assisted transmission of entangled photons,” Nature 418(6895), 304–306 (2002).
[CrossRef] [PubMed]

Opt. Commun.

K. H. Chen, C. C. Hsu, and D. C. Su, “Measurement of wavelength shift by using surface plasmon resonance heterodyne interferometry,” Opt. Commun. 209(1-3), 167–172 (2002).
[CrossRef]

A. Krishnan, T. Thio, and ., “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 197, 217–233 (2001).

Opt. Lett.

Phys. Rev. Lett.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[CrossRef] [PubMed]

K. J. Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, “Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes,” Phys. Rev. Lett. 92(18), 183901 (2004).
[CrossRef] [PubMed]

Science

D. K. Kambhampati and W. Knoll, “Surface-plasmon optical techniques, Current Opinion in Colloid & Interface,” Science 4, 273–280 (1999).

J. B. Pendry, L. Martín-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305(5685), 847–848 (2004).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

C. M. Wua, Z. C. Jian, S. F. Joec, and L. B. Chang, “High-sensitivity sensor based on surface plasmon resonance and heterodyne interferometry,” Sens. Actuators B Chem. 92(1-2), 133–136 (2003).
[CrossRef]

S. G. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonance sensor based on phase detection,” Sens. Actuators B Chem. 35(1-3), 187–191 (1996).
[CrossRef]

X. L. Yu, L. Q. Zhao, H. Jiang, and ., “Immunosensor based on optical heterodyne phase detection,” Sens. Actuators B Chem. 76(1-3), 199–202 (2001).
[CrossRef]

X. L. Yu, D. X. Wang, and Z. B. Yan, “Simulation and analysis of surface plasmon resonance biosensor based on phase detection,” Sens. Actuators B Chem. 91(1-3), 285–290 (2003).
[CrossRef]

Other

C. B. Scruby, and L. E. Drain, Laser ultrasonics techniques and applications (LOP Publishing Ltd, 1990), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic of nanohole array (a = hole size, d = hole period, h = hole depth).

Fig. 2
Fig. 2

Cross section of proposed phase-sensitive SPR sensor.

Fig. 3
Fig. 3

Square hole period versus phase change (red line for gold and black line for silver).

Fig. 4
Fig. 4

Metal layer thickness versus phase change (red line for gold and black line for silver).

Fig. 5
Fig. 5

Square hole width versus phase change (red line for gold and black line for silver)

Fig. 6
Fig. 6

Influence of hole shape on phase change (sensor layer material: gold)

Fig. 7
Fig. 7

Refractive index versus phase change with all parameters optimized. (red line for gold and black line for silver)

Fig. 8
Fig. 8

Effect of curved corners at hole edges. (a) Schematic of curved corners. (b) Radius of curvature versus phase change.

Fig. 9
Fig. 9

Surface roughness on glass substrate.

Fig. 10
Fig. 10

Chemical sensing. (a) Schematic of sensor structure; (b) Refractive index of the solution versus phase.

Tables (1)

Tables Icon

Table 1 Comparison between Kretschmann and nanohole array configurations.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

Eeiϕ=E0{T11ei[ωt(k1d+k2h)+ϕ0]+T21ei[ωt(2k1d+k2h)+ϕ0]+T31ei[ωt(3k1d+k2h)+ϕ0]++T12ei[ωt(k1d+3k2h)+ϕ0]+T22ei[ωt(2k1d+3k2h)+ϕ0]+T32ei[ωt(3k1d+3k2h)+ϕ0]++T13ei[ωt(k1d+5k2h)+ϕ0]+T23ei[ωt(2k1d+5k2h)+ϕ0]+T33ei[ωt(3k1d+5k2h)+ϕ0]+ +}
k1k2Re[ωc(εmetalεeffεmetal+εeff)1/2]
EeiϕE0T11ei{ωtRe[ω(d+h)c(εmetalεeffεmetal+εeff)1/2]+ϕ0}
Dt=×H
D(ω)=ε0εr*(ω)E(ω)
Ht=1μ0×E
(i2+j2)1/2λspp=dRe[(εmεdεm+εd)1/2]
εd=2l0ε(z)exp(2zl)dz
δxN=λ4π(hυΔfηWs)2

Metrics