Abstract

A single oscillation-mode laser employing the asymmetric waveguide structure is designed and analyzed. The mode selection mechanism is realized by using an asymmetric Bragg reflection waveguide (BRW) and shown to be effective to achieve high side-mode suppression ratio (SMSR). As an example, a silicon-based quasi-one-dimensional BRW with Er-doped Si-nanocrystal in the silicon oxide core is considered and illustrated for the laser structure. Guidance properties and threshold conditions are examined to verify the design procedure and performance feasibility for the single oscillation mode laser.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Semiconductor lasers (Van Nostrand Reinhold, c1993), Chap. 3-6,8.
  2. P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, 2005), Chap. 6.
  3. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflectior," Science 282, 1679-1682 (1999).
    [CrossRef]
  4. B. R. West and A. S. Helmy, "Properties of the quarter-wave Bragg reflection waveguide: theory," J. Opt. Soc. Am. B 23, 1207-1220 (2006).
    [CrossRef]
  5. J. Li and K. S. Chiang, "Guided modes of one-dimensional photonic bandgap waveguides," J. Opt. Soc. Am. B 24, 1942-1950 (2007); "Light guidance in a photonic bandgap slab waveguide consisting of two different Bragg reflectors," Opt. Comm. 281, 5797-5803 (2008).
    [CrossRef]
  6. L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).
  7. D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. D. Negro, "Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification," Phys. Rev. B 67, 245301-245314 (2003)
    [CrossRef]
  8. H. S. Han, S. Y. Seo, and J. H. Shin, "Optical gain at 1.54 µm in erbium-doped silicon nanocluster sensitized waveguide," Appl. Phys. Lett. 79, 4568-4570 (2001).
    [CrossRef]
  9. S. L. Chuang, Physics of optoelectronic devices (John Wiley& Sons, 1995), Chap, 9.
  10. T. L. Koch and U. Koren, "Semiconductor Lasers for coherent optical fiber communications," J. Lightwave Technol. 8, 274-293 (1990).
    [CrossRef]
  11. P. Fournier, B. P. Orsal, J. M. Peransin, and R. M. Alabedra, "Spontaneous emission factor and gain evaluation of an optical amplifier by using noise measurements with no input signal," Proc. SPIE 2449, 257-263 (1995).
    [CrossRef]

2008 (1)

J. Li and K. S. Chiang, "Guided modes of one-dimensional photonic bandgap waveguides," J. Opt. Soc. Am. B 24, 1942-1950 (2007); "Light guidance in a photonic bandgap slab waveguide consisting of two different Bragg reflectors," Opt. Comm. 281, 5797-5803 (2008).
[CrossRef]

2006 (1)

2003 (1)

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. D. Negro, "Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification," Phys. Rev. B 67, 245301-245314 (2003)
[CrossRef]

2001 (1)

H. S. Han, S. Y. Seo, and J. H. Shin, "Optical gain at 1.54 µm in erbium-doped silicon nanocluster sensitized waveguide," Appl. Phys. Lett. 79, 4568-4570 (2001).
[CrossRef]

1999 (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflectior," Science 282, 1679-1682 (1999).
[CrossRef]

1995 (1)

P. Fournier, B. P. Orsal, J. M. Peransin, and R. M. Alabedra, "Spontaneous emission factor and gain evaluation of an optical amplifier by using noise measurements with no input signal," Proc. SPIE 2449, 257-263 (1995).
[CrossRef]

1990 (1)

T. L. Koch and U. Koren, "Semiconductor Lasers for coherent optical fiber communications," J. Lightwave Technol. 8, 274-293 (1990).
[CrossRef]

Alabedra, R. M.

P. Fournier, B. P. Orsal, J. M. Peransin, and R. M. Alabedra, "Spontaneous emission factor and gain evaluation of an optical amplifier by using noise measurements with no input signal," Proc. SPIE 2449, 257-263 (1995).
[CrossRef]

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflectior," Science 282, 1679-1682 (1999).
[CrossRef]

Chiang, K. S.

J. Li and K. S. Chiang, "Guided modes of one-dimensional photonic bandgap waveguides," J. Opt. Soc. Am. B 24, 1942-1950 (2007); "Light guidance in a photonic bandgap slab waveguide consisting of two different Bragg reflectors," Opt. Comm. 281, 5797-5803 (2008).
[CrossRef]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflectior," Science 282, 1679-1682 (1999).
[CrossRef]

Fink, Y.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflectior," Science 282, 1679-1682 (1999).
[CrossRef]

Fournier, P.

P. Fournier, B. P. Orsal, J. M. Peransin, and R. M. Alabedra, "Spontaneous emission factor and gain evaluation of an optical amplifier by using noise measurements with no input signal," Proc. SPIE 2449, 257-263 (1995).
[CrossRef]

Franzò, G.

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. D. Negro, "Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification," Phys. Rev. B 67, 245301-245314 (2003)
[CrossRef]

Han, H. S.

H. S. Han, S. Y. Seo, and J. H. Shin, "Optical gain at 1.54 µm in erbium-doped silicon nanocluster sensitized waveguide," Appl. Phys. Lett. 79, 4568-4570 (2001).
[CrossRef]

Helmy, A. S.

Iacona, F.

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. D. Negro, "Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification," Phys. Rev. B 67, 245301-245314 (2003)
[CrossRef]

Joannopoulos, J. D.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflectior," Science 282, 1679-1682 (1999).
[CrossRef]

Koch, T. L.

T. L. Koch and U. Koren, "Semiconductor Lasers for coherent optical fiber communications," J. Lightwave Technol. 8, 274-293 (1990).
[CrossRef]

Koren, U.

T. L. Koch and U. Koren, "Semiconductor Lasers for coherent optical fiber communications," J. Lightwave Technol. 8, 274-293 (1990).
[CrossRef]

Li, J.

J. Li and K. S. Chiang, "Guided modes of one-dimensional photonic bandgap waveguides," J. Opt. Soc. Am. B 24, 1942-1950 (2007); "Light guidance in a photonic bandgap slab waveguide consisting of two different Bragg reflectors," Opt. Comm. 281, 5797-5803 (2008).
[CrossRef]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflectior," Science 282, 1679-1682 (1999).
[CrossRef]

Negro, L. D.

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. D. Negro, "Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification," Phys. Rev. B 67, 245301-245314 (2003)
[CrossRef]

Orsal, B. P.

P. Fournier, B. P. Orsal, J. M. Peransin, and R. M. Alabedra, "Spontaneous emission factor and gain evaluation of an optical amplifier by using noise measurements with no input signal," Proc. SPIE 2449, 257-263 (1995).
[CrossRef]

Pacifici, D.

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. D. Negro, "Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification," Phys. Rev. B 67, 245301-245314 (2003)
[CrossRef]

Peransin, J. M.

P. Fournier, B. P. Orsal, J. M. Peransin, and R. M. Alabedra, "Spontaneous emission factor and gain evaluation of an optical amplifier by using noise measurements with no input signal," Proc. SPIE 2449, 257-263 (1995).
[CrossRef]

Priolo, F.

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. D. Negro, "Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification," Phys. Rev. B 67, 245301-245314 (2003)
[CrossRef]

Seo, S. Y.

H. S. Han, S. Y. Seo, and J. H. Shin, "Optical gain at 1.54 µm in erbium-doped silicon nanocluster sensitized waveguide," Appl. Phys. Lett. 79, 4568-4570 (2001).
[CrossRef]

Shin, J. H.

H. S. Han, S. Y. Seo, and J. H. Shin, "Optical gain at 1.54 µm in erbium-doped silicon nanocluster sensitized waveguide," Appl. Phys. Lett. 79, 4568-4570 (2001).
[CrossRef]

Thomas, E. L.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflectior," Science 282, 1679-1682 (1999).
[CrossRef]

West, B. R.

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflectior," Science 282, 1679-1682 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

H. S. Han, S. Y. Seo, and J. H. Shin, "Optical gain at 1.54 µm in erbium-doped silicon nanocluster sensitized waveguide," Appl. Phys. Lett. 79, 4568-4570 (2001).
[CrossRef]

J. Lightwave Technol. (1)

T. L. Koch and U. Koren, "Semiconductor Lasers for coherent optical fiber communications," J. Lightwave Technol. 8, 274-293 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Comm. (1)

J. Li and K. S. Chiang, "Guided modes of one-dimensional photonic bandgap waveguides," J. Opt. Soc. Am. B 24, 1942-1950 (2007); "Light guidance in a photonic bandgap slab waveguide consisting of two different Bragg reflectors," Opt. Comm. 281, 5797-5803 (2008).
[CrossRef]

Phys. Rev. B (1)

D. Pacifici, G. Franzò, F. Priolo, F. Iacona, and L. D. Negro, "Modeling and perspectives of the Si nanocrystals-Er interaction for optical amplification," Phys. Rev. B 67, 245301-245314 (2003)
[CrossRef]

Proc. SPIE (1)

P. Fournier, B. P. Orsal, J. M. Peransin, and R. M. Alabedra, "Spontaneous emission factor and gain evaluation of an optical amplifier by using noise measurements with no input signal," Proc. SPIE 2449, 257-263 (1995).
[CrossRef]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflectior," Science 282, 1679-1682 (1999).
[CrossRef]

Other (4)

S. L. Chuang, Physics of optoelectronic devices (John Wiley& Sons, 1995), Chap, 9.

L. Pavesi and D. J. Lockwood, Silicon Photonics (Springer, 2004).

G. P. Agrawal, Semiconductor lasers (Van Nostrand Reinhold, c1993), Chap. 3-6,8.

P. Yeh, Optical Waves in Layered Media (John Wiley & Sons, 2005), Chap. 6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

The schematic diagram for the designed Bragg reflection waveguide (BRW) lasers. (a) The designed model consisting of a transverse Bragg reflection waveguide along x and a uniform waveguide along z. (b) The refractive index profile for the one-dimensional BRW laser.

Fig. 2.
Fig. 2.

(a) Qualitative illustration of the band diagram for the left and right infinite-layer Bragg reflectors; (b) Dispersion relation of an optimized infinite-layer asymmetric BRW (ncore=1.0, n1=3.5, n2=2.6, n3=2.9658, n4=2.0658, tc=1000 nm, a1=a2=100 nm, b1=b2=200 nm); (c) Confinement and leakage loss profiles for the 50-period finite-layer asymmetric BRW (green-triangle line, other parameters are the same as in (b)), compared with two 50-period finite-layer symmetric BRWs with low (Δn=0.05, black-squared line) and high (Δn=0.5, red-circled line) index contrast; (d) Confinement and leakage loss profiles for the 10-, 20-, and 100-period finite-layer asymmetric BRWs (other parameters are the same as in (b)).

Fig. 3.
Fig. 3.

(a) Field amplitude for the TE wave of a 20-period finite-layer asymmetric BRW at λ=1559 nm (other parameters are the same as in Fig. 2(b)); (b) Confinement and leakage loss as a function of wavelength for the same BRW structure as in (a).

Fig. 4.
Fig. 4.

Threshold gain of asymmetric BRWs with (a) 10-, 20- and 100-period claddings. Other structure parameters are the same as in Fig. 2(b). (b) Sensitivity of threshold gain to the core index changes in the asymmetric 20-period cladding case.

Fig. 5.
Fig. 5.

(a) Band diagram of perturbed asymmetric BRW with infinite periods of the claddings compared with original configuration as shown in Fig. 2(b). (b) Corresponding threshold gain change due to perturbation of the cladding index for the 20-period finite-layer case.

Fig. 6.
Fig. 6.

Side-mode suppression ratio of the BRW laser at different main-mode power

Fig. 7.
Fig. 7.

Alternative structure and refractive index profile of the 1D BRW design for Bragg laser

Fig. 8.
Fig. 8.

(a) Dispersion relation of a Si-based infinite-layer asymmetric BRW (ncore=1.5, n1=3.45, n2=1.0, tc=1934 nm, a=108 nm, b=196 nm, c=249 nm and d=51 nm); (b) Field profile of the TE wave for the same structure at λ=1575 nm with finite number of layers (30 periods on the right and 10 periods on the left).

Fig. 9.
Fig. 9.

(a) Confinement factor, and (b) threshold gain of the Si-laser with Er-doped SRSO core.

Fig. 10.
Fig. 10.

SMSR of Si-based BRW laser with Er-doped SRSO at different main-mode power

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Γ (λ) gth(λ)=γ (λ)+12Lln(1R1R2)
sin [neff(λ)kL]=0 .
Δ λ=λ22L[neffλ(dneffdλ)]
SMSR=2P0hvvgnspγtot[αLγmL],

Metrics