Abstract

We report the use of nonlinear compression in a very large mode-area rod-type photonic crystal fiber. This fiber allows the use of high energy pulses in the few microjoule range. We demonstrate the compression of 4 µJ, 338 fs pulses from a fiber chirped pulse amplification (FCPA) system down to 49 fs, 41 MW peak power pulses at a repetition rate of 200 kHz with an average power of 400 mW. The nonlinear compression setup is composed of a 5-cm-long rod-type fiber and a pair of SF10 prisms. The system was optimized to obtain good temporal quality, with a temporal Strehl ration of 86 % for the compressed 49 fs pulses.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
    [CrossRef]
  2. F. Roser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, and A. Tünnermann, "Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 3495-3497 (2007).
    [CrossRef] [PubMed]
  3. Y. Zaouter, J. Boullet, E. Mottay, and E. Cormier, "Transform-limited 100 μJ, 340 MW pulses from a nonlinear-fiber chirped-pulse amplifier using a mismatched grating stretcher-compressor," Opt. Lett. 33, 1527-1529 (2008).
    [CrossRef] [PubMed]
  4. D. N. Papadopoulos, M. Hanna, F. Druon, and P. Georges, "Compensation of Gain Narrowing by Self-Phase Modulation in High-Energy Ultrafast Fiber Chirped-Pulse Amplifiers," IEEE J. Sel. Top. Quantum Electron. 15, 182-186 (2009).
    [CrossRef]
  5. Y. Zaouter, D. Papadopoulos, M. Hanna, J. Boullet, L. Huang, C. Aguergaray, F. Druon, E. Mottay, P. Georges, and E. Cormier, "Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers," Opt. Lett. 33, 107-109 (2008).
    [CrossRef] [PubMed]
  6. G. P. Agrawal, Nonlinear Fiber (Optics Academic Press, 2006).
  7. S. Hädrich, J. Rothhardt, T. Eidam, J. Limpert, and A. Tünnermann, "High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system," Opt. Express 17, 3913-3922 (2009)
    [CrossRef] [PubMed]
  8. T. Eidam, F. Roser, O. Schmidt, J. Limpert, and A. Tunnermann, "57 W, 27 fs pulses from a fiber laser system using nonlinear compression," Appl. Phys. B 92, 9-12 (2008).
    [CrossRef]
  9. T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, "Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber," Opt. Lett. 28, 1951-1953 (2003)
    [CrossRef] [PubMed]
  10. F. Druon and P. Georges, "Pulse-compression down to 20 fs using a photonic crystal fiber seeded by a diode-pumped Yb:SYS laser at 1070 nm," Opt. Express 12, 3383-3396 (2004).
    [CrossRef] [PubMed]
  11. D. N. Papadopoulos, F. Druon, J. Boudeile, I. Martial, M. Hanna, P. Georges, P. O. Petit, P. Goldner, and B. Viana, "Low-repetition-rate femtosecond operation in extended-cavity mode-locked Yb:CALGO laser," Opt. Lett. 34, 196-198 (2009),
    [CrossRef] [PubMed]
  12. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, "Compression of Optical Pulses Chirped by Self-Phase Modulation in Fibers," J. Opt. Soc. Am. B 1, 139-149 (1984).
    [CrossRef]
  13. R. Trebino, Frequency-Resolved Optical Gating : The Measurement of Ultrashort Laser Pulses (K. A. Publisher, ed. Atlanta, 2000)

2009

2008

2007

2004

2003

2000

T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

1984

Aguergaray, C.

Baggett, J. C.

Boudeile, J.

Boullet, J.

Brabec, T.

T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

Brunner, F.

Cormier, E.

Druon, F.

Eidam, T.

Furusawa, K.

Georges, P.

Goldner, P.

Hädrich, S.

Hanna, M.

Huang, L.

Innerhofer, E.

Keller, U.

Krausz, F.

T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

Limpert, J.

Martial, I.

Monro, T. M.

Mottay, E.

Papadopoulos, D.

Papadopoulos, D. N.

D. N. Papadopoulos, M. Hanna, F. Druon, and P. Georges, "Compensation of Gain Narrowing by Self-Phase Modulation in High-Energy Ultrafast Fiber Chirped-Pulse Amplifiers," IEEE J. Sel. Top. Quantum Electron. 15, 182-186 (2009).
[CrossRef]

D. N. Papadopoulos, F. Druon, J. Boudeile, I. Martial, M. Hanna, P. Georges, P. O. Petit, P. Goldner, and B. Viana, "Low-repetition-rate femtosecond operation in extended-cavity mode-locked Yb:CALGO laser," Opt. Lett. 34, 196-198 (2009),
[CrossRef] [PubMed]

Paschotta, R.

Petit, P. O.

Richardson, D. J.

Roser, F.

Rothhardt, J.

Schimpf, D. N.

Schmidt, O.

Shank, C. V.

Stolen, R. H.

Südmeyer, T.

Tomlinson, W. J.

Tunnermann, A.

T. Eidam, F. Roser, O. Schmidt, J. Limpert, and A. Tunnermann, "57 W, 27 fs pulses from a fiber laser system using nonlinear compression," Appl. Phys. B 92, 9-12 (2008).
[CrossRef]

Tünnermann, A.

Viana, B.

Zaouter, Y.

Appl. Phys. B

T. Eidam, F. Roser, O. Schmidt, J. Limpert, and A. Tunnermann, "57 W, 27 fs pulses from a fiber laser system using nonlinear compression," Appl. Phys. B 92, 9-12 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. N. Papadopoulos, M. Hanna, F. Druon, and P. Georges, "Compensation of Gain Narrowing by Self-Phase Modulation in High-Energy Ultrafast Fiber Chirped-Pulse Amplifiers," IEEE J. Sel. Top. Quantum Electron. 15, 182-186 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Rev. Mod. Phys.

T. Brabec and F. Krausz, "Intense few-cycle laser fields: Frontiers of nonlinear optics," Rev. Mod. Phys. 72, 545-591 (2000).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber (Optics Academic Press, 2006).

R. Trebino, Frequency-Resolved Optical Gating : The Measurement of Ultrashort Laser Pulses (K. A. Publisher, ed. Atlanta, 2000)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic drawing of the experimental setup.

Fig. 2.
Fig. 2.

FROG retrieved pulses at the YDFA output after compression for energies from 1 µJ to 6 µJ.

Fig. 3.
Fig. 3.

FROG retrieved temporal and spectral (inset) intensities (black) and phase (red), at 2 µJ (left) and 4µJ (right) input energies.

Fig. 4.
Fig. 4.

Temporal profiles of the compressed pulses obtained by numerical simulations of the nonlinear compression in the 5 cm long rod-type fiber for initial chirp of: +15000 fs2(green line), 0 fs2 (blue line), -15000 fs2 (red line).

Metrics