Abstract

Nanophotonics has the potential to provide novel devices and systems with unique functions based on optical near-field interactions. Here we experimentally demonstrate, for the first time, what we call a quadrupole–dipole transform achieved by optical near-field interactions between engineered nanostructures. We describe its principles, the nanostructure design, fabrication of one- and two-layer gold nanostructures, an experimental demonstration, and optical characterization and analysis.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse Ed, Principles of Nanophotonics (Taylor and Francis, Boca Raton, 2008).
  2. M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, “Nanophotonics: Application of Dressed Photons to Novel Photonic Devices and Systems,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1404–1417 (2008).
    [CrossRef]
  3. E. Runge and C. Lienau, “Near-field wave-function spectroscopy of excitons and biexcitons,” Phys. Rev. B 71(3), 035347 (2005).
    [CrossRef]
  4. K. Matsuda, T. Saiki, S. Nomura, and Y. Aoyagi, “Local density of states mapping of a field-induced quantum dot by near-field photoluminescence microscopy,” Appl. Phys. Lett. 87(4), 043112 (2005).
    [CrossRef]
  5. W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69(23), 233312 (2004).
    [CrossRef]
  6. K. Ueno, Y. Yokota, S. Juodkazis, V. Mizeikis, and H. Misawa, “Nano-structured materials in plasmonics and photonics,” Curr. Nanosci. 4(3), 232–235 (2008).
    [CrossRef]
  7. T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics B , 011597 (2007).
    [CrossRef]
  8. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  9. M. Naruse, T. Kawazoe, T. Yatsui, S. Sangu, K. Kobayashi, and M. Ohtsu, in Progress in Nano-Electro-Optics V, ed. M. Ohtsu (Springer, Berlin, 2006).
  10. T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
    [CrossRef] [PubMed]
  11. T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
    [CrossRef]
  12. T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Optical nanofountain: A biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
    [CrossRef]
  13. M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008).
    [CrossRef]
  14. M. Naruse, T. Yatsui, T. Kawazoe, N. Tate, H. Sugiyama, and M. Ohtsu, “Nanophotonic Matching by Optical Near-Fields between Shape-Engineered Nanostructures,” Appl. Phys. Exp. 1, 112101 (2008).
    [CrossRef]
  15. D. W. Lynch, and W. R. Hunter, “Comments on the Optical Constants of Metals and an Introduction to the Data for Several Metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, Orlando, 1985), pp. 275–367.
  16. M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
    [CrossRef]
  17. H. Yonemitsu, T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Nonadiabatic photochemical reaction and application to photolithography,” J. Lumin. 122–123, 230–233 (2007).
    [CrossRef]
  18. P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-Actuated AC Electroosmosis for Nanoparticle Manipulation,” IEEE J. Microelectromech. Sys. 17(3), 525–531 (2008).
    [CrossRef]
  19. M. Naruse, T. Inoue, and H. Hori, “Analysis and Synthesis of Hierarchy in Optical Near-Field Interactions at the Nanoscale Based on Angular Spectrum,” Jpn. J. Appl. Phys. 46(No. 9A), 6095–6103 (2007).
    [CrossRef]
  20. N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchy in optical near-fields based on compositions of nanomaterials,” Appl. Phys. B . in press.
  21. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [CrossRef] [PubMed]

2008

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, “Nanophotonics: Application of Dressed Photons to Novel Photonic Devices and Systems,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1404–1417 (2008).
[CrossRef]

K. Ueno, Y. Yokota, S. Juodkazis, V. Mizeikis, and H. Misawa, “Nano-structured materials in plasmonics and photonics,” Curr. Nanosci. 4(3), 232–235 (2008).
[CrossRef]

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008).
[CrossRef]

M. Naruse, T. Yatsui, T. Kawazoe, N. Tate, H. Sugiyama, and M. Ohtsu, “Nanophotonic Matching by Optical Near-Fields between Shape-Engineered Nanostructures,” Appl. Phys. Exp. 1, 112101 (2008).
[CrossRef]

P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-Actuated AC Electroosmosis for Nanoparticle Manipulation,” IEEE J. Microelectromech. Sys. 17(3), 525–531 (2008).
[CrossRef]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

2007

H. Yonemitsu, T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Nonadiabatic photochemical reaction and application to photolithography,” J. Lumin. 122–123, 230–233 (2007).
[CrossRef]

M. Naruse, T. Inoue, and H. Hori, “Analysis and Synthesis of Hierarchy in Optical Near-Field Interactions at the Nanoscale Based on Angular Spectrum,” Jpn. J. Appl. Phys. 46(No. 9A), 6095–6103 (2007).
[CrossRef]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics B , 011597 (2007).
[CrossRef]

2006

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

2005

E. Runge and C. Lienau, “Near-field wave-function spectroscopy of excitons and biexcitons,” Phys. Rev. B 71(3), 035347 (2005).
[CrossRef]

K. Matsuda, T. Saiki, S. Nomura, and Y. Aoyagi, “Local density of states mapping of a field-induced quantum dot by near-field photoluminescence microscopy,” Appl. Phys. Lett. 87(4), 043112 (2005).
[CrossRef]

T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Optical nanofountain: A biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
[CrossRef]

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
[CrossRef]

2004

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69(23), 233312 (2004).
[CrossRef]

2002

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Akagi, F.

T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics B , 011597 (2007).
[CrossRef]

An, S. J.

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

Aoyagi, Y.

K. Matsuda, T. Saiki, S. Nomura, and Y. Aoyagi, “Local density of states mapping of a field-induced quantum dot by near-field photoluminescence microscopy,” Appl. Phys. Lett. 87(4), 043112 (2005).
[CrossRef]

Chiou, P.-Y.

P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-Actuated AC Electroosmosis for Nanoparticle Manipulation,” IEEE J. Microelectromech. Sys. 17(3), 525–531 (2008).
[CrossRef]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Hieda, H.

T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics B , 011597 (2007).
[CrossRef]

Hori, H.

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008).
[CrossRef]

M. Naruse, T. Inoue, and H. Hori, “Analysis and Synthesis of Hierarchy in Optical Near-Field Interactions at the Nanoscale Based on Angular Spectrum,” Jpn. J. Appl. Phys. 46(No. 9A), 6095–6103 (2007).
[CrossRef]

Hsu, H.-Y.

P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-Actuated AC Electroosmosis for Nanoparticle Manipulation,” IEEE J. Microelectromech. Sys. 17(3), 525–531 (2008).
[CrossRef]

Hussein, M. L.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69(23), 233312 (2004).
[CrossRef]

Inoue, T.

M. Naruse, T. Inoue, and H. Hori, “Analysis and Synthesis of Hierarchy in Optical Near-Field Interactions at the Nanoscale Based on Angular Spectrum,” Jpn. J. Appl. Phys. 46(No. 9A), 6095–6103 (2007).
[CrossRef]

Jamshidi, A.

P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-Actuated AC Electroosmosis for Nanoparticle Manipulation,” IEEE J. Microelectromech. Sys. 17(3), 525–531 (2008).
[CrossRef]

Johnson, M. B.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69(23), 233312 (2004).
[CrossRef]

Juodkazis, S.

K. Ueno, Y. Yokota, S. Juodkazis, V. Mizeikis, and H. Misawa, “Nano-structured materials in plasmonics and photonics,” Curr. Nanosci. 4(3), 232–235 (2008).
[CrossRef]

Kawazoe, T.

M. Naruse, T. Yatsui, T. Kawazoe, N. Tate, H. Sugiyama, and M. Ohtsu, “Nanophotonic Matching by Optical Near-Fields between Shape-Engineered Nanostructures,” Appl. Phys. Exp. 1, 112101 (2008).
[CrossRef]

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, “Nanophotonics: Application of Dressed Photons to Novel Photonic Devices and Systems,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1404–1417 (2008).
[CrossRef]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

H. Yonemitsu, T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Nonadiabatic photochemical reaction and application to photolithography,” J. Lumin. 122–123, 230–233 (2007).
[CrossRef]

T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Optical nanofountain: A biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
[CrossRef]

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Kikitsu, A.

T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics B , 011597 (2007).
[CrossRef]

Kobayashi, K.

H. Yonemitsu, T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Nonadiabatic photochemical reaction and application to photolithography,” J. Lumin. 122–123, 230–233 (2007).
[CrossRef]

T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Optical nanofountain: A biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
[CrossRef]

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Lienau, C.

E. Runge and C. Lienau, “Near-field wave-function spectroscopy of excitons and biexcitons,” Phys. Rev. B 71(3), 035347 (2005).
[CrossRef]

Lim, J.

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Ma, W. Q.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69(23), 233312 (2004).
[CrossRef]

Matsuda, K.

K. Matsuda, T. Saiki, S. Nomura, and Y. Aoyagi, “Local density of states mapping of a field-induced quantum dot by near-field photoluminescence microscopy,” Appl. Phys. Lett. 87(4), 043112 (2005).
[CrossRef]

Matsumoto, T.

T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics B , 011597 (2007).
[CrossRef]

Misawa, H.

K. Ueno, Y. Yokota, S. Juodkazis, V. Mizeikis, and H. Misawa, “Nano-structured materials in plasmonics and photonics,” Curr. Nanosci. 4(3), 232–235 (2008).
[CrossRef]

Mishima, T. D.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69(23), 233312 (2004).
[CrossRef]

Mizeikis, V.

K. Ueno, Y. Yokota, S. Juodkazis, V. Mizeikis, and H. Misawa, “Nano-structured materials in plasmonics and photonics,” Curr. Nanosci. 4(3), 232–235 (2008).
[CrossRef]

Mukai, A.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
[CrossRef]

Naito, K.

T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics B , 011597 (2007).
[CrossRef]

Narita, Y.

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

Naruse, M.

M. Naruse, T. Yatsui, T. Kawazoe, N. Tate, H. Sugiyama, and M. Ohtsu, “Nanophotonic Matching by Optical Near-Fields between Shape-Engineered Nanostructures,” Appl. Phys. Exp. 1, 112101 (2008).
[CrossRef]

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, “Nanophotonics: Application of Dressed Photons to Novel Photonic Devices and Systems,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1404–1417 (2008).
[CrossRef]

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008).
[CrossRef]

M. Naruse, T. Inoue, and H. Hori, “Analysis and Synthesis of Hierarchy in Optical Near-Field Interactions at the Nanoscale Based on Angular Spectrum,” Jpn. J. Appl. Phys. 46(No. 9A), 6095–6103 (2007).
[CrossRef]

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchy in optical near-fields based on compositions of nanomaterials,” Appl. Phys. B . in press.

Naya, M.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
[CrossRef]

Nishida, T.

T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics B , 011597 (2007).
[CrossRef]

Nomura, S.

K. Matsuda, T. Saiki, S. Nomura, and Y. Aoyagi, “Local density of states mapping of a field-induced quantum dot by near-field photoluminescence microscopy,” Appl. Phys. Lett. 87(4), 043112 (2005).
[CrossRef]

Nomura, W.

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchy in optical near-fields based on compositions of nanomaterials,” Appl. Phys. B . in press.

Ohta, A. T.

P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-Actuated AC Electroosmosis for Nanoparticle Manipulation,” IEEE J. Microelectromech. Sys. 17(3), 525–531 (2008).
[CrossRef]

Ohtsu, M.

M. Naruse, T. Yatsui, T. Kawazoe, N. Tate, H. Sugiyama, and M. Ohtsu, “Nanophotonic Matching by Optical Near-Fields between Shape-Engineered Nanostructures,” Appl. Phys. Exp. 1, 112101 (2008).
[CrossRef]

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, “Nanophotonics: Application of Dressed Photons to Novel Photonic Devices and Systems,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1404–1417 (2008).
[CrossRef]

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008).
[CrossRef]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

H. Yonemitsu, T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Nonadiabatic photochemical reaction and application to photolithography,” J. Lumin. 122–123, 230–233 (2007).
[CrossRef]

T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Optical nanofountain: A biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
[CrossRef]

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchy in optical near-fields based on compositions of nanomaterials,” Appl. Phys. B . in press.

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Runge, E.

E. Runge and C. Lienau, “Near-field wave-function spectroscopy of excitons and biexcitons,” Phys. Rev. B 71(3), 035347 (2005).
[CrossRef]

Saiki, T.

K. Matsuda, T. Saiki, S. Nomura, and Y. Aoyagi, “Local density of states mapping of a field-induced quantum dot by near-field photoluminescence microscopy,” Appl. Phys. Lett. 87(4), 043112 (2005).
[CrossRef]

Sakaguchi, S.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
[CrossRef]

Salamo, G. J.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69(23), 233312 (2004).
[CrossRef]

Sangu, S.

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

Shultz, J. L.

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69(23), 233312 (2004).
[CrossRef]

Sugiyama, H.

M. Naruse, T. Yatsui, T. Kawazoe, N. Tate, H. Sugiyama, and M. Ohtsu, “Nanophotonic Matching by Optical Near-Fields between Shape-Engineered Nanostructures,” Appl. Phys. Exp. 1, 112101 (2008).
[CrossRef]

Tani, T.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
[CrossRef]

Tate, N.

M. Naruse, T. Yatsui, T. Kawazoe, N. Tate, H. Sugiyama, and M. Ohtsu, “Nanophotonic Matching by Optical Near-Fields between Shape-Engineered Nanostructures,” Appl. Phys. Exp. 1, 112101 (2008).
[CrossRef]

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchy in optical near-fields based on compositions of nanomaterials,” Appl. Phys. B . in press.

Tsuruma, I.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
[CrossRef]

Ueno, K.

K. Ueno, Y. Yokota, S. Juodkazis, V. Mizeikis, and H. Misawa, “Nano-structured materials in plasmonics and photonics,” Curr. Nanosci. 4(3), 232–235 (2008).
[CrossRef]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Wu, M. C.

P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-Actuated AC Electroosmosis for Nanoparticle Manipulation,” IEEE J. Microelectromech. Sys. 17(3), 525–531 (2008).
[CrossRef]

Yasui, M.

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008).
[CrossRef]

Yasunami, S.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
[CrossRef]

Yatsui, T.

M. Naruse, T. Yatsui, T. Kawazoe, N. Tate, H. Sugiyama, and M. Ohtsu, “Nanophotonic Matching by Optical Near-Fields between Shape-Engineered Nanostructures,” Appl. Phys. Exp. 1, 112101 (2008).
[CrossRef]

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008).
[CrossRef]

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, “Nanophotonics: Application of Dressed Photons to Novel Photonic Devices and Systems,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1404–1417 (2008).
[CrossRef]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchy in optical near-fields based on compositions of nanomaterials,” Appl. Phys. B . in press.

Yi, G.-C.

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

Yokota, Y.

K. Ueno, Y. Yokota, S. Juodkazis, V. Mizeikis, and H. Misawa, “Nano-structured materials in plasmonics and photonics,” Curr. Nanosci. 4(3), 232–235 (2008).
[CrossRef]

Yonemitsu, H.

H. Yonemitsu, T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Nonadiabatic photochemical reaction and application to photolithography,” J. Lumin. 122–123, 230–233 (2007).
[CrossRef]

Yoo, J.

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Appl. Phys. B

N. Tate, W. Nomura, T. Yatsui, M. Naruse, and M. Ohtsu, “Hierarchy in optical near-fields based on compositions of nanomaterials,” Appl. Phys. B . in press.

Appl. Phys. Exp.

M. Naruse, T. Yatsui, T. Kawazoe, N. Tate, H. Sugiyama, and M. Ohtsu, “Nanophotonic Matching by Optical Near-Fields between Shape-Engineered Nanostructures,” Appl. Phys. Exp. 1, 112101 (2008).
[CrossRef]

Appl. Phys. Lett.

M. Naya, I. Tsuruma, T. Tani, A. Mukai, S. Sakaguchi, and S. Yasunami, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86(20), 201113 (2005).
[CrossRef]

T. Yatsui, S. Sangu, T. Kawazoe, M. Ohtsu, S. J. An, J. Yoo, and G.-C. Yi, “Nanophotonic switch using ZnO nanorod double-quantum-well structures,” Appl. Phys. Lett. 90(22), 223110 (2007).
[CrossRef]

T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Optical nanofountain: A biomimetic device that concentrates optical energy in a nanometric region,” Appl. Phys. Lett. 86(10), 103102 (2005).
[CrossRef]

K. Matsuda, T. Saiki, S. Nomura, and Y. Aoyagi, “Local density of states mapping of a field-induced quantum dot by near-field photoluminescence microscopy,” Appl. Phys. Lett. 87(4), 043112 (2005).
[CrossRef]

Curr. Nanosci.

K. Ueno, Y. Yokota, S. Juodkazis, V. Mizeikis, and H. Misawa, “Nano-structured materials in plasmonics and photonics,” Curr. Nanosci. 4(3), 232–235 (2008).
[CrossRef]

IEEE J. Microelectromech. Sys.

P.-Y. Chiou, A. T. Ohta, A. Jamshidi, H.-Y. Hsu, and M. C. Wu, “Light-Actuated AC Electroosmosis for Nanoparticle Manipulation,” IEEE J. Microelectromech. Sys. 17(3), 525–531 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Ohtsu, T. Kawazoe, T. Yatsui, and M. Naruse, “Nanophotonics: Application of Dressed Photons to Novel Photonic Devices and Systems,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1404–1417 (2008).
[CrossRef]

J. Appl. Phys.

M. Naruse, T. Yatsui, H. Hori, M. Yasui, and M. Ohtsu, “Polarization in optical near- and far-field and its relation to shape and layout of nanostructures,” J. Appl. Phys. 103(11), 113525 (2008).
[CrossRef]

J. Lumin.

H. Yonemitsu, T. Kawazoe, K. Kobayashi, and M. Ohtsu, “Nonadiabatic photochemical reaction and application to photolithography,” J. Lumin. 122–123, 230–233 (2007).
[CrossRef]

J. Nanophotonics B

T. Nishida, T. Matsumoto, F. Akagi, H. Hieda, A. Kikitsu, and K. Naito, “Hybrid recording on bit-patterned media using a near-field optical head,” J. Nanophotonics B , 011597 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

M. Naruse, T. Inoue, and H. Hori, “Analysis and Synthesis of Hierarchy in Optical Near-Field Interactions at the Nanoscale Based on Angular Spectrum,” Jpn. J. Appl. Phys. 46(No. 9A), 6095–6103 (2007).
[CrossRef]

Phys. Rev. B

E. Runge and C. Lienau, “Near-field wave-function spectroscopy of excitons and biexcitons,” Phys. Rev. B 71(3), 035347 (2005).
[CrossRef]

W. Q. Ma, M. L. Hussein, J. L. Shultz, G. J. Salamo, T. D. Mishima, and M. B. Johnson, “Enhancing the in-plane spatial ordering of quantum dots,” Phys. Rev. B 69(23), 233312 (2004).
[CrossRef]

Phys. Rev. Lett.

T. Kawazoe, K. Kobayashi, J. Lim, Y. Narita, and M. Ohtsu, “Direct observation of optically forbidden energy transfer between CuCl quantum cubes via near-field optical spectroscopy,” Phys. Rev. Lett. 88(6), 067404 (2002).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Other

M. Naruse, T. Kawazoe, T. Yatsui, S. Sangu, K. Kobayashi, and M. Ohtsu, in Progress in Nano-Electro-Optics V, ed. M. Ohtsu (Springer, Berlin, 2006).

M. Ohtsu, K. Kobayashi, T. Kawazoe, T. Yatsui, and M. Naruse Ed, Principles of Nanophotonics (Taylor and Francis, Boca Raton, 2008).

D. W. Lynch, and W. R. Hunter, “Comments on the Optical Constants of Metals and an Introduction to the Data for Several Metals,” in Handbook of Optical Constants of Solids, E. D. Palik, ed. (Academic Press, Orlando, 1985), pp. 275–367.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) A quadrupole–dipole transform in the transition from the (2,1,1) level to the (1,1,1) level in QDB. Such a transform is unachievable without the optical near-field interactions between QDA and QDB, which allow the (2,1,1) level in QDB to be populated with excitons. (b) A quadrupole–dipole transform is also achieved through shape-engineered nanostructures and their associated optical near-field interactions.

Fig. 2
Fig. 2

(a) Specifications of the three types of nanostructures used in numerical evaluation of the conversion efficiency based on the FDTD method: Shape A only, Shape B only, and a stacked structure of Shapes A and B. (b,c) Surface charge density distributions induced in (b) Shape A only and (c) Shape B only. (d) Surface charge density distribution induced in Shape B only when it is stacked on top of Shape A only. (e) Calculated performance figures of the quadrupole–dipole transform, namely, polarization conversion efficiency, with three types of nanostructures. (f) Selective comparison at a wavelength of 690 nm.

Fig. 3
Fig. 3

(a) Schematic diagram of the fabrication process of the two-layer nanostructure. The stacked structure was integrated in a single sample as a solid two-layer structure to avoid experimental difficulty in precisely aligning the individual structures mechanically. (b) SEM images of each structure.

Fig. 4
Fig. 4

(a) Measured conversion efficiency for the three types of nanostructures. Conversion efficiency exhibited a larger value specifically in the areas where the stacked structure of Shapes A and B was located. (b) Conversion efficiency within the area of the stacked structure of Shapes A and B. SEM images are also shown corresponding to the evaluation position. Conversion efficiency exhibited a larger value when the misalignment between Shape A and Shape B was minimized.

Fig. 5
Fig. 5

(a) Horizontal and vertical misalignments between Shape A and Shape B denoted by Δx and Δy , and (b), (c), their relations to conversion efficiency. (d) Schematic cross-sectional profiles of samples with different gaps. The thickness of the SiO2 gap layer between the first and second layers was set in three steps. (e) The conversion efficiency decreased as the gap increased. The result validates the principle of the quadrupole–dipole transform that requires optical near-field interactions between closely arranged nanostructures.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

E(nx,ny,nz)=EB+2π22ML2(nx2+ny2+nz2)
Iconv=IyOUT/IxIN

Metrics