Abstract

The task of anti-aliasing in absolute profile measurement by multi-sensor scanning techniques is considered. Simulation results are presented which demonstrate that aliasing can be highly reduced by a suitable choice of the scanning steps. The simulation results were confirmed by results obtained for interferometric measurements (Nyquist frequency 1/646 µm−1) on a specifically designed chirp specimen with sinusoidal waves of amplitude 100 nm and wavelengths from 2.5 mm down to 19 µm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Deck and P. de Groot, "High-speed noncontact profiler based on scanning white-light interferometry," Appl. Opt. 33, 7334-7338 (1994).
    [CrossRef] [PubMed]
  2. L. Lahousse, S. Leleu, J. David, O. Gibaru, S. Ducourtieux, "Z calibration of the LNE ultra precision coordinate measuring machine," in Proceedings of the 9th international conference of the european society for precision engineering and nanotechnology, V 2, 348-353 (2007).
  3. J. Cohen-Sabban and D. Reolon, "Vibration insensitive 3D-profilometry: a new type of white light interferometric microscopy," Proc. SPIE 7064, 706405-706405-9 (2008).
    [CrossRef]
  4. D. J. Whitehouse, "Some theoretical aspects of error separation techniques in surface metrology," J. Phys. E. Sci. Instrum. 9, 531-536 (1976).
    [CrossRef]
  5. W. Gao and S. Kiyono, "High accuracy profile measurement of a machined surface by the combined method," Measurement 19, 55-64 (1996).
    [CrossRef]
  6. C. Elster, I. Weingaertner, and M. Schulz, "Coupled distance sensor systems for high-accuracy topography measurement: Accounting for scanning stage and systematic sensor errors," Prec. Eng. 30, 32-38 (2006).
    [CrossRef]
  7. A. Wiegmann, M. Schulz, and C. Elster, "Absolute profile measurement of large moderately flat optical surfaces with high dynamic range," Opt. Express 16, 11975-11986 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-11975.
    [CrossRef] [PubMed]
  8. µPhase Interferometer, FISBA Optik AG, CH-9016 St. Gallen and FISBA Optik GmbH, Berlin, http://www.fisba.ch/.
  9. MPLS 180, STIL - 595, rue Pierre Berthier - Domaine de Saint Hilaire - 13855 Aix en Provence Cedex 3 - FRANCE, http://www.stilsa.com/.
  10. E. Marsh, J. Couey, and R. Vallance, "Nanometer-Level Comparison of Three Spindle Error Motion Separation Techniques," J. Manuf. Sci. Eng. 128, 180-187 (2006)
    [CrossRef]
  11. V. Bakshi, EUV Lithography (John Wiley & Sons, 2009), Chap. 5.3
  12. B. Doerband and J. Hetzler, "Characterizing lateral resolution of interferometers: the Height Transfer Function (HTF)," Proc. SPIE 5878, 587806 (2005).
    [CrossRef]
  13. R. Krueger-Sehm, P. Bakucz, L. Jung, H. Wilhelms, "Chirp-Kalibriernormale fuer Obeflaechenmessgeraete," Technisches Messen 74,572-576 (2007).
  14. A. Wiegmann, C. Elster, M. Schulz, M. Stavridis, "Absolute Topographievermessung gekruemmter optischer Oberflaechen mit hoher lateraler Aufloesung," in Proceedings of the 109th DgaO,http://www.dgao-proceedings.de/download/109/109_p28.pdf.

2008

2007

R. Krueger-Sehm, P. Bakucz, L. Jung, H. Wilhelms, "Chirp-Kalibriernormale fuer Obeflaechenmessgeraete," Technisches Messen 74,572-576 (2007).

2006

C. Elster, I. Weingaertner, and M. Schulz, "Coupled distance sensor systems for high-accuracy topography measurement: Accounting for scanning stage and systematic sensor errors," Prec. Eng. 30, 32-38 (2006).
[CrossRef]

E. Marsh, J. Couey, and R. Vallance, "Nanometer-Level Comparison of Three Spindle Error Motion Separation Techniques," J. Manuf. Sci. Eng. 128, 180-187 (2006)
[CrossRef]

2005

B. Doerband and J. Hetzler, "Characterizing lateral resolution of interferometers: the Height Transfer Function (HTF)," Proc. SPIE 5878, 587806 (2005).
[CrossRef]

1996

W. Gao and S. Kiyono, "High accuracy profile measurement of a machined surface by the combined method," Measurement 19, 55-64 (1996).
[CrossRef]

1994

1976

D. J. Whitehouse, "Some theoretical aspects of error separation techniques in surface metrology," J. Phys. E. Sci. Instrum. 9, 531-536 (1976).
[CrossRef]

Bakucz, P.

R. Krueger-Sehm, P. Bakucz, L. Jung, H. Wilhelms, "Chirp-Kalibriernormale fuer Obeflaechenmessgeraete," Technisches Messen 74,572-576 (2007).

Couey, J.

E. Marsh, J. Couey, and R. Vallance, "Nanometer-Level Comparison of Three Spindle Error Motion Separation Techniques," J. Manuf. Sci. Eng. 128, 180-187 (2006)
[CrossRef]

de Groot, P.

Deck, L.

Doerband, B.

B. Doerband and J. Hetzler, "Characterizing lateral resolution of interferometers: the Height Transfer Function (HTF)," Proc. SPIE 5878, 587806 (2005).
[CrossRef]

Elster, C.

A. Wiegmann, M. Schulz, and C. Elster, "Absolute profile measurement of large moderately flat optical surfaces with high dynamic range," Opt. Express 16, 11975-11986 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-11975.
[CrossRef] [PubMed]

C. Elster, I. Weingaertner, and M. Schulz, "Coupled distance sensor systems for high-accuracy topography measurement: Accounting for scanning stage and systematic sensor errors," Prec. Eng. 30, 32-38 (2006).
[CrossRef]

Gao, W.

W. Gao and S. Kiyono, "High accuracy profile measurement of a machined surface by the combined method," Measurement 19, 55-64 (1996).
[CrossRef]

Hetzler, J.

B. Doerband and J. Hetzler, "Characterizing lateral resolution of interferometers: the Height Transfer Function (HTF)," Proc. SPIE 5878, 587806 (2005).
[CrossRef]

Jung, L.

R. Krueger-Sehm, P. Bakucz, L. Jung, H. Wilhelms, "Chirp-Kalibriernormale fuer Obeflaechenmessgeraete," Technisches Messen 74,572-576 (2007).

Kiyono, S.

W. Gao and S. Kiyono, "High accuracy profile measurement of a machined surface by the combined method," Measurement 19, 55-64 (1996).
[CrossRef]

Krueger-Sehm, R.

R. Krueger-Sehm, P. Bakucz, L. Jung, H. Wilhelms, "Chirp-Kalibriernormale fuer Obeflaechenmessgeraete," Technisches Messen 74,572-576 (2007).

Marsh, E.

E. Marsh, J. Couey, and R. Vallance, "Nanometer-Level Comparison of Three Spindle Error Motion Separation Techniques," J. Manuf. Sci. Eng. 128, 180-187 (2006)
[CrossRef]

Schulz, M.

A. Wiegmann, M. Schulz, and C. Elster, "Absolute profile measurement of large moderately flat optical surfaces with high dynamic range," Opt. Express 16, 11975-11986 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-16-11975.
[CrossRef] [PubMed]

C. Elster, I. Weingaertner, and M. Schulz, "Coupled distance sensor systems for high-accuracy topography measurement: Accounting for scanning stage and systematic sensor errors," Prec. Eng. 30, 32-38 (2006).
[CrossRef]

Vallance, R.

E. Marsh, J. Couey, and R. Vallance, "Nanometer-Level Comparison of Three Spindle Error Motion Separation Techniques," J. Manuf. Sci. Eng. 128, 180-187 (2006)
[CrossRef]

Weingaertner, I.

C. Elster, I. Weingaertner, and M. Schulz, "Coupled distance sensor systems for high-accuracy topography measurement: Accounting for scanning stage and systematic sensor errors," Prec. Eng. 30, 32-38 (2006).
[CrossRef]

Whitehouse, D. J.

D. J. Whitehouse, "Some theoretical aspects of error separation techniques in surface metrology," J. Phys. E. Sci. Instrum. 9, 531-536 (1976).
[CrossRef]

Wiegmann, A.

Wilhelms, H.

R. Krueger-Sehm, P. Bakucz, L. Jung, H. Wilhelms, "Chirp-Kalibriernormale fuer Obeflaechenmessgeraete," Technisches Messen 74,572-576 (2007).

Appl. Opt.

J. Manuf. Sci. Eng.

E. Marsh, J. Couey, and R. Vallance, "Nanometer-Level Comparison of Three Spindle Error Motion Separation Techniques," J. Manuf. Sci. Eng. 128, 180-187 (2006)
[CrossRef]

J. Phys. E. Sci. Instrum.

D. J. Whitehouse, "Some theoretical aspects of error separation techniques in surface metrology," J. Phys. E. Sci. Instrum. 9, 531-536 (1976).
[CrossRef]

Measurement

W. Gao and S. Kiyono, "High accuracy profile measurement of a machined surface by the combined method," Measurement 19, 55-64 (1996).
[CrossRef]

Opt. Express

Prec. Eng.

C. Elster, I. Weingaertner, and M. Schulz, "Coupled distance sensor systems for high-accuracy topography measurement: Accounting for scanning stage and systematic sensor errors," Prec. Eng. 30, 32-38 (2006).
[CrossRef]

Proc. SPIE

B. Doerband and J. Hetzler, "Characterizing lateral resolution of interferometers: the Height Transfer Function (HTF)," Proc. SPIE 5878, 587806 (2005).
[CrossRef]

Technisches Messen

R. Krueger-Sehm, P. Bakucz, L. Jung, H. Wilhelms, "Chirp-Kalibriernormale fuer Obeflaechenmessgeraete," Technisches Messen 74,572-576 (2007).

Other

A. Wiegmann, C. Elster, M. Schulz, M. Stavridis, "Absolute Topographievermessung gekruemmter optischer Oberflaechen mit hoher lateraler Aufloesung," in Proceedings of the 109th DgaO,http://www.dgao-proceedings.de/download/109/109_p28.pdf.

L. Lahousse, S. Leleu, J. David, O. Gibaru, S. Ducourtieux, "Z calibration of the LNE ultra precision coordinate measuring machine," in Proceedings of the 9th international conference of the european society for precision engineering and nanotechnology, V 2, 348-353 (2007).

J. Cohen-Sabban and D. Reolon, "Vibration insensitive 3D-profilometry: a new type of white light interferometric microscopy," Proc. SPIE 7064, 706405-706405-9 (2008).
[CrossRef]

µPhase Interferometer, FISBA Optik AG, CH-9016 St. Gallen and FISBA Optik GmbH, Berlin, http://www.fisba.ch/.

MPLS 180, STIL - 595, rue Pierre Berthier - Domaine de Saint Hilaire - 13855 Aix en Provence Cedex 3 - FRANCE, http://www.stilsa.com/.

V. Bakshi, EUV Lithography (John Wiley & Sons, 2009), Chap. 5.3

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Sketch of the used absolute profile measurement method. The thick red horizontal lines represent the line sensor array in different measurement positions. The blue vertical lines represent the systematic sensor errors εj.

Fig. 2.
Fig. 2.

Transfer functions of the interpolation scheme used in the reconstruction algorithm for different degrees of interpolation in comparison to the ideal sinc interpolation.

Fig. 3.
Fig. 3.

Dense topography sampling with a line sensor consisting of N equidistant sensors.

Fig. 4.
Fig. 4.

Root mean square errors of the reconstructed topographies in dependence on the frequency of the simulated topography (ftopo) for dense and fore sparse sampling.

Fig. 5.
Fig. 5.

Local wavelength λ of the manufactured chirp specimen as function of the distance to the center of the specimen.

Fig. 6.
Fig. 6.

Lateral high-resolution reconstruction of the entire chirp specimen utilizing all pixels of the compact interferometer (orange) and aliasing free reconstruction (blue) for dense sampling with the reduces sensor array. The red vertical lines mark the positions where the chirp specimen has a local frequency corresponding to the Nyquist frequency of the reduced sensor array.

Fig. 7.
Fig. 7.

Detailed view on the reconstructed chirp specimen for sparse topography sampling.

Fig. 8.
Fig. 8.

Fig. 8. Detailed view on the reconstructed chirp specimen for dense topography sampling.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

mi,j=Σk=floor(x˜ds)ο12ceil(x˜ds)+ο12ck(X˜)f(xk)+εj+ai+bis(j)
ck(x˜)=i=floor(x˜ds)ο12ceil(x˜ds)+ο12x˜xixkxi.
ik

Metrics