Abstract

An integrated sensor system is presented which displays passive long range operation to 100 km at pico-strain (pε) sensitivity to low frequencies (4 Hz) in wavelength division multiplexed operation with negligible cross-talk (better than −75 dB). This has been achieved by pre-stabilizing and multiplexing all interrogation lasers for the sensor array to a single optical frequency reference. This single frequency reference allows each laser to be locked to an arbitrary wavelength and independently tuned, while maintaining suppression of laser frequency noise. With appropriate packaging, such a multiplexed strain sensing system can form the core of a low frequency accelerometer or hydrophone array.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “The Optical Oilfield – Fibre Optic Seismic for Permanent Seabed Reservoir Monitoring,” Business Briefing: Exploration and Production: The Oil and Gas Review Vol. 2 (2003). http://www.touchoilandgas.com/optical-oilfield-fibre-optic-a222-1.html
  2. G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, P. J. Nash, J. Latchem, and R. Crickmore, “Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array,” IEEE Photon. Technol. Lett. 15(11), 1579–1581 (2003).
    [CrossRef]
  3. E. Ronnekleiv, O. H. Waagaard, D. Thingbo, and S. Forbord, “Suppression of Rayleigh Scattering Noise in a TDM Multiplexed Interferometric Sensor System,” Conference on Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. 1–3, 24–28 Feb. 2008. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4528405&isnumber=4528018
  4. D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O’Neill, I. Bennion, and L. Zhang, “A fiber laser hydrophone array,” in Proc. SPIE Conf. Fiber Optic Sensor Technology and Applications Boston, MA, 3860, 55–66 (1999).
  5. S. Foster, A. Tikhomirov, M. Milnes, J. van Velzen, and G. Hardy, “A fiber laser hydrophone,” Proc. SPIE 5855, 627–630 (2003).
    [CrossRef]
  6. R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [CrossRef]
  7. J. H. Chow, I. C. M. Littler, G. de Vine, D. E. McClelland, and M. B. Gray, “Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications,” J. Lightwave Technol. 23(5), 1881–1889 (2005).
    [CrossRef]
  8. J. H. Chow, D. E. McClelland, M. B. Gray, and I. C. Littler, “Demonstration of a passive subpicostrain fiber strain sensor,” Opt. Lett. 30(15), 1923–1925 (2005).
    [CrossRef] [PubMed]
  9. J. H. Chow, I. C. Littler, D. E. McClelland, and M. B. Gray, “Laser frequency-noise-limited ultrahigh resolution remote fiber sensing,” Opt. Express 14(11), 4617–4624 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-11-4617 .
    [CrossRef] [PubMed]
  10. D. Shaddock, B. Ware, P. G. Halverson, R. E. Spero, and B. Klipstein, “Overview of the LISA Phasemeter,” AIP Conf. Proc. Laser Interferometer Space Antenna: 6th International LISA Symposium, November 29, 2006, 873, 654–660 (2006).
  11. C. Greiner, B. Boggs, T. Wang, and T. W. Mossberg, “Laser frequency stabilization by means of optical self-heterodyne beat-frequency control,” Opt. Lett. 23(16), 1280–1282 (1998), http://www.opticsinfobase.org/abstract.cfm?URI=ol-23-16-1280 .
    [CrossRef]
  12. J. H. Chow, J. S. Cumpston, I. C. M. Littler, D. E. McClelland, and M. B. Gray, “Interrogation of a passive fiber Bragg grating resonator sensor by current modulation of a diode laser,” Lasers and Electro-Optics Society,2005. LEOS 2005. The 18th Annual Meeting of the IEEE, 818–819, 22–28 Oct. 2005. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1548251&isnumber=33016
  13. B. Lissak, A. Arie, and M. Tur, “Highly sensitive dynamic strain measurements by locking lasers in fiber Bragg gratings,” Opt. Lett. 23(24), 1930–1932 (1998).
    [CrossRef]
  14. D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser bandshape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
    [CrossRef]
  15. T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt. 7(4), 601–613 (1995).
    [CrossRef]
  16. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
    [CrossRef]
  17. K. H. Wanser, “Fundamental phase noise limit in optical fibres due to temperature fluctuations,” Electron. Lett. 28(1), 53–54 (1992).
    [CrossRef]

2006

2005

2003

G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, P. J. Nash, J. Latchem, and R. Crickmore, “Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array,” IEEE Photon. Technol. Lett. 15(11), 1579–1581 (2003).
[CrossRef]

S. Foster, A. Tikhomirov, M. Milnes, J. van Velzen, and G. Hardy, “A fiber laser hydrophone,” Proc. SPIE 5855, 627–630 (2003).
[CrossRef]

1998

1997

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

1995

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt. 7(4), 601–613 (1995).
[CrossRef]

1992

K. H. Wanser, “Fundamental phase noise limit in optical fibres due to temperature fluctuations,” Electron. Lett. 28(1), 53–54 (1992).
[CrossRef]

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

1982

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser bandshape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
[CrossRef]

Arie, A.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Bautista, A.

G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, P. J. Nash, J. Latchem, and R. Crickmore, “Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array,” IEEE Photon. Technol. Lett. 15(11), 1579–1581 (2003).
[CrossRef]

Boggs, B.

Bramati, A.

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt. 7(4), 601–613 (1995).
[CrossRef]

Chow, J. H.

Cranch, G. A.

G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, P. J. Nash, J. Latchem, and R. Crickmore, “Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array,” IEEE Photon. Technol. Lett. 15(11), 1579–1581 (2003).
[CrossRef]

Crickmore, R.

G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, P. J. Nash, J. Latchem, and R. Crickmore, “Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array,” IEEE Photon. Technol. Lett. 15(11), 1579–1581 (2003).
[CrossRef]

Daley, K.

G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, P. J. Nash, J. Latchem, and R. Crickmore, “Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array,” IEEE Photon. Technol. Lett. 15(11), 1579–1581 (2003).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

de Vine, G.

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Elliott, D. S.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser bandshape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Foster, S.

S. Foster, A. Tikhomirov, M. Milnes, J. van Velzen, and G. Hardy, “A fiber laser hydrophone,” Proc. SPIE 5855, 627–630 (2003).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Giacobino, E.

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt. 7(4), 601–613 (1995).
[CrossRef]

Grangier, P.

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt. 7(4), 601–613 (1995).
[CrossRef]

Gray, M. B.

Greiner, C.

Grelu, P.

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt. 7(4), 601–613 (1995).
[CrossRef]

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Hardy, G.

S. Foster, A. Tikhomirov, M. Milnes, J. van Velzen, and G. Hardy, “A fiber laser hydrophone,” Proc. SPIE 5855, 627–630 (2003).
[CrossRef]

Hough, J.

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Jost, V.

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt. 7(4), 601–613 (1995).
[CrossRef]

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kirkendall, C. K.

G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, P. J. Nash, J. Latchem, and R. Crickmore, “Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array,” IEEE Photon. Technol. Lett. 15(11), 1579–1581 (2003).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Kowalsky, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Latchem, J.

G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, P. J. Nash, J. Latchem, and R. Crickmore, “Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array,” IEEE Photon. Technol. Lett. 15(11), 1579–1581 (2003).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Levenson, M. D.

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt. 7(4), 601–613 (1995).
[CrossRef]

Lissak, B.

Littler, I. C.

Littler, I. C. M.

Marin, F.

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt. 7(4), 601–613 (1995).
[CrossRef]

McClelland, D. E.

Milnes, M.

S. Foster, A. Tikhomirov, M. Milnes, J. van Velzen, and G. Hardy, “A fiber laser hydrophone,” Proc. SPIE 5855, 627–630 (2003).
[CrossRef]

Mossberg, T. W.

Motley, S.

G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, P. J. Nash, J. Latchem, and R. Crickmore, “Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array,” IEEE Photon. Technol. Lett. 15(11), 1579–1581 (2003).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Nash, P. J.

G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, P. J. Nash, J. Latchem, and R. Crickmore, “Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array,” IEEE Photon. Technol. Lett. 15(11), 1579–1581 (2003).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Poizat, J.-Ph.

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt. 7(4), 601–613 (1995).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Roch, J.-F.

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt. 7(4), 601–613 (1995).
[CrossRef]

Roy, R.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser bandshape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
[CrossRef]

Salzano, J.

G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, P. J. Nash, J. Latchem, and R. Crickmore, “Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array,” IEEE Photon. Technol. Lett. 15(11), 1579–1581 (2003).
[CrossRef]

Smith, S. J.

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser bandshape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
[CrossRef]

Tikhomirov, A.

S. Foster, A. Tikhomirov, M. Milnes, J. van Velzen, and G. Hardy, “A fiber laser hydrophone,” Proc. SPIE 5855, 627–630 (2003).
[CrossRef]

Tur, M.

van Velzen, J.

S. Foster, A. Tikhomirov, M. Milnes, J. van Velzen, and G. Hardy, “A fiber laser hydrophone,” Proc. SPIE 5855, 627–630 (2003).
[CrossRef]

Wang, T.

Wanser, K. H.

K. H. Wanser, “Fundamental phase noise limit in optical fibres due to temperature fluctuations,” Electron. Lett. 28(1), 53–54 (1992).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Zhang, T.-C.

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt. 7(4), 601–613 (1995).
[CrossRef]

Appl. Phys. B

R. W. P. Drever, J. L. Hall, F. V. Kowalsky, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[CrossRef]

Electron. Lett.

K. H. Wanser, “Fundamental phase noise limit in optical fibres due to temperature fluctuations,” Electron. Lett. 28(1), 53–54 (1992).
[CrossRef]

IEEE Photon. Technol. Lett.

G. A. Cranch, C. K. Kirkendall, K. Daley, S. Motley, A. Bautista, J. Salzano, P. J. Nash, J. Latchem, and R. Crickmore, “Large-scale remotely pumped and interrogated fiber-optic interferometric sensor array,” IEEE Photon. Technol. Lett. 15(11), 1579–1581 (2003).
[CrossRef]

J. Lightwave Technol.

J. H. Chow, I. C. M. Littler, G. de Vine, D. E. McClelland, and M. B. Gray, “Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications,” J. Lightwave Technol. 23(5), 1881–1889 (2005).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15(8), 1442–1463 (1997).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

D. S. Elliott, R. Roy, and S. J. Smith, “Extracavity laser bandshape and bandwidth modification,” Phys. Rev. A 26(1), 12–18 (1982).
[CrossRef]

Proc. SPIE

S. Foster, A. Tikhomirov, M. Milnes, J. van Velzen, and G. Hardy, “A fiber laser hydrophone,” Proc. SPIE 5855, 627–630 (2003).
[CrossRef]

Quantum Semiclassic. Opt.

T.-C. Zhang, J.-Ph. Poizat, P. Grelu, J.-F. Roch, P. Grangier, F. Marin, A. Bramati, V. Jost, M. D. Levenson, and E. Giacobino, “Quantum noise of free-running and externally-stabilized laser diodes,” Quantum Semiclassic. Opt. 7(4), 601–613 (1995).
[CrossRef]

Other

D. Shaddock, B. Ware, P. G. Halverson, R. E. Spero, and B. Klipstein, “Overview of the LISA Phasemeter,” AIP Conf. Proc. Laser Interferometer Space Antenna: 6th International LISA Symposium, November 29, 2006, 873, 654–660 (2006).

J. H. Chow, J. S. Cumpston, I. C. M. Littler, D. E. McClelland, and M. B. Gray, “Interrogation of a passive fiber Bragg grating resonator sensor by current modulation of a diode laser,” Lasers and Electro-Optics Society,2005. LEOS 2005. The 18th Annual Meeting of the IEEE, 818–819, 22–28 Oct. 2005. http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1548251&isnumber=33016

“The Optical Oilfield – Fibre Optic Seismic for Permanent Seabed Reservoir Monitoring,” Business Briefing: Exploration and Production: The Oil and Gas Review Vol. 2 (2003). http://www.touchoilandgas.com/optical-oilfield-fibre-optic-a222-1.html

E. Ronnekleiv, O. H. Waagaard, D. Thingbo, and S. Forbord, “Suppression of Rayleigh Scattering Noise in a TDM Multiplexed Interferometric Sensor System,” Conference on Optical Fiber communication/National Fiber Optic Engineers Conference, 2008. OFC/NFOEC 2008. 1–3, 24–28 Feb. 2008. URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4528405&isnumber=4528018

D. J. Hill, P. J. Nash, D. A. Jackson, D. J. Webb, S. F. O’Neill, I. Bennion, and L. Zhang, “A fiber laser hydrophone array,” in Proc. SPIE Conf. Fiber Optic Sensor Technology and Applications Boston, MA, 3860, 55–66 (1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

The reflection spectra of three closely spaced FFPI channels. Clearly shown are two Fabry Perot modes, which are impedance matched. Only one mode is employed for sensing in each channel. The out-of-band sidelobes, due to imperfect apodization of the FBGs, shown here are not to scale. Coupled with reflections from the slight impedance mismatch, these can cause inter-channel cross-talk.

Fig. 2
Fig. 2

Simplified overview schematic of the sensor system. Upper circuit: A number of lasers are multiplexed to a single frequency reference, which performs a laser frequency to RF phase conversion. Subsequent demultiplexing, and low pass filtering to remove residual FRF , enables noise suppression of each individual laser via a phase measurement and a feedback via a servo to the laser current. Lower circuit: Each laser is locked to a Fabry Perot mode of each sensor, with feedback to the laser current and sensor readout achieved via an RF modulation technique. Conversion of PM to AM at the FFPI creates a measure of the sensor strain.

Fig. 3
Fig. 3

An out-of-loop measurement yields A) the frequency noise of the laser when locked to the frequency reference compared to B) the frequency noise of the free running laser. The small resonances at 20 Hz and 480 Hz are not laser frequency noise but an artifact introduced by mechanical pick-up

Fig. 4
Fig. 4

A) Strain spectra of each of the four sensors interrogated by its respective pre-stabilized laser, with all lasers operating concurrently. B) The strain spectra of one sensor when a free running laser is used to interrogate it. The suppression at 10 Hz of frequency noise is approximately two orders of magnitude.

Fig. 5
Fig. 5

Strain spectrum of the lowest noise channel A) with only a few meters of fiber delivering the light to and from the sensors and B) with 100 km of delivery fiber. The slight rise in the noise floor is negligible and is due to the lower signal to electronic noise, when the light arrives at the photo-detector after 100 km of fiber and net signal strength decline of −10 dB.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

strain(ε/Hz)=ΔνFFPIh8ηνP
Ibeat(t)E0(t)E0(tnΔLc)         xcos{2π[tnΔLctν(t')dt'+FAOMt+φ]}
ΔνLaser=πSf2
δεδνB=λB0.78c       =6.6x1015ε/Hz

Metrics