Abstract

A grating coupler with fully etched slots is optimized for fiber coupling into SOI slab waveguides. Such coupler can be produced in one lithography step together with other SOI components. Theoretical maximal coupling efficiency of 49% is demonstrated with a 3dB bandwidth of 35nm. Strong reflection from the fully etched grating was avoided through an antireflection interface. Constructive interference is used to decrease radiation into the substrate and the filling factor is optimized for optimal power coupling into the fiber mode. It was also demonstrated, that the chirped grating approach is inapplicable for fully etched gratings.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Lipson, “Guiding, modulating, and emitting light on silicon-challenges and opportunities,” J. Lightwave Technol. 23(12), 4222–4238 (2005).
    [CrossRef]
  2. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. van Campenhout, P. Bienstman, and D. van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
    [CrossRef]
  3. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003).
    [CrossRef] [PubMed]
  4. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
    [CrossRef]
  5. D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. van Daele, I. Moerman, S. Verstuyft, K. de Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
    [CrossRef]
  6. D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
    [CrossRef] [PubMed]
  7. F. van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. van Thourhout, T. E. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
    [CrossRef]
  8. J. V. Galan, P. Sanchis, J. Blasco, and J. Marti, “Study of High Efficiency Grating Couplers for Silicon-Based Horizontal Slot Waveguides,” IEEE Photon. Technol. Lett. 20(12), 985–987 (2008).
    [CrossRef]
  9. G. Roelkens, D. van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-24-11622 .
    [CrossRef] [PubMed]
  10. G. Roelkens, D. Vermeulen, D. van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92(13), 131101 (2008).
    [CrossRef]
  11. G. Roelkens, D. Vermeulen, D. van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, “High efficiency SOI fiber-to-waveguide grating couplers fabricated using CMOS technology,” in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008) paper IME3, http://www.opticsinfobase.org/abstract.cfm?URI=IPNRA-2008-IME3
  12. B. Wang, J. Jiang, and G. Nordin, “Compact slanted grating couplers,” Opt. Express 12(15), 3313–3326 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-15-3313 .
    [CrossRef] [PubMed]
  13. L. Vivien, D. Pascal, S. Lardenois, D. MarTis-Morini, E. Cassan, F. Grillot, S. Laval, J. M. Fedeli, and L. El Melhaoui, “Light injection in SOI microwaveguides using high-efficiency grating couplers,” J. Lightwave Technol. 24(10), 3810–3815 (2006).
    [CrossRef]
  14. Available at, www.cst.com .
  15. T. Weiland, “Time domain electromagnetic field computation with finite difference methods,” Int. J. Numer. Model. 9(4), 295–319 (1996).
    [CrossRef]
  16. M. Clemens, and T. Weiland, “Discrete electromagnetism with the finite integration technique,” in Geometric Methods for Computational Electromagnetics, PIER. 32, F. L. Teixeira, J. A. Kong, eds., (EMW Publishing, 2001) 65–87.
  17. T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. 22(6), 845–867 (1986).
    [CrossRef]
  18. R. M. Emmons and D. G. Hall, “Buried-oxide silicon-on-insulator structures. II. Waveguide gratingcouplers,” IEEE J. Quantum Electron. 28(1), 164–175 (1992).
    [CrossRef]
  19. D. Gerace and L. C. Andreani, “Disorder-induced losses in photonic crystal waveguides with line defects,” Opt. Lett. 29(16), 1897–1899 (2004).
    [CrossRef] [PubMed]

2008

J. V. Galan, P. Sanchis, J. Blasco, and J. Marti, “Study of High Efficiency Grating Couplers for Silicon-Based Horizontal Slot Waveguides,” IEEE Photon. Technol. Lett. 20(12), 985–987 (2008).
[CrossRef]

G. Roelkens, D. Vermeulen, D. van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92(13), 131101 (2008).
[CrossRef]

2007

2006

2005

2004

2003

2002

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. van Daele, I. Moerman, S. Verstuyft, K. de Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

1996

T. Weiland, “Time domain electromagnetic field computation with finite difference methods,” Int. J. Numer. Model. 9(4), 295–319 (1996).
[CrossRef]

1992

R. M. Emmons and D. G. Hall, “Buried-oxide silicon-on-insulator structures. II. Waveguide gratingcouplers,” IEEE J. Quantum Electron. 28(1), 164–175 (1992).
[CrossRef]

1986

T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. 22(6), 845–867 (1986).
[CrossRef]

Almeida, V. R.

Andreani, L. C.

Ayre, M.

Baets, R.

G. Roelkens, D. Vermeulen, D. van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92(13), 131101 (2008).
[CrossRef]

F. van Laere, G. Roelkens, M. Ayre, J. Schrauwen, D. Taillaert, D. van Thourhout, T. E. Krauss, and R. Baets, “Compact and highly efficient grating couplers between optical fiber and nanophotonic waveguides,” J. Lightwave Technol. 25(1), 151–156 (2007).
[CrossRef]

G. Roelkens, D. van Thourhout, and R. Baets, “High efficiency Silicon-on-Insulator grating coupler based on a poly-Silicon overlay,” Opt. Express 14(24), 11622–11630 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-24-11622 .
[CrossRef] [PubMed]

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. van Campenhout, P. Bienstman, and D. van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

D. Taillaert, P. Bienstman, and R. Baets, “Compact efficient broadband grating coupler for silicon-on-insulator waveguides,” Opt. Lett. 29(23), 2749–2751 (2004).
[CrossRef] [PubMed]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. van Daele, I. Moerman, S. Verstuyft, K. de Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Beckx, S.

Bienstman, P.

Blasco, J.

J. V. Galan, P. Sanchis, J. Blasco, and J. Marti, “Study of High Efficiency Grating Couplers for Silicon-Based Horizontal Slot Waveguides,” IEEE Photon. Technol. Lett. 20(12), 985–987 (2008).
[CrossRef]

Bogaerts, W.

W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. van Campenhout, P. Bienstman, and D. van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” J. Lightwave Technol. 23(1), 401–412 (2005).
[CrossRef]

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. van Daele, I. Moerman, S. Verstuyft, K. de Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Brision, S.

G. Roelkens, D. Vermeulen, D. van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92(13), 131101 (2008).
[CrossRef]

Cassan, E.

de Mesel, K.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. van Daele, I. Moerman, S. Verstuyft, K. de Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Dumon, P.

El Melhaoui, L.

Emmons, R. M.

R. M. Emmons and D. G. Hall, “Buried-oxide silicon-on-insulator structures. II. Waveguide gratingcouplers,” IEEE J. Quantum Electron. 28(1), 164–175 (1992).
[CrossRef]

Fedeli, J. M.

Fédéli, J. M.

G. Roelkens, D. Vermeulen, D. van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92(13), 131101 (2008).
[CrossRef]

Galan, J. V.

J. V. Galan, P. Sanchis, J. Blasco, and J. Marti, “Study of High Efficiency Grating Couplers for Silicon-Based Horizontal Slot Waveguides,” IEEE Photon. Technol. Lett. 20(12), 985–987 (2008).
[CrossRef]

Gautier, P.

G. Roelkens, D. Vermeulen, D. van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92(13), 131101 (2008).
[CrossRef]

Gerace, D.

Grillot, F.

Hall, D. G.

R. M. Emmons and D. G. Hall, “Buried-oxide silicon-on-insulator structures. II. Waveguide gratingcouplers,” IEEE J. Quantum Electron. 28(1), 164–175 (1992).
[CrossRef]

Jiang, J.

Krauss, T. E.

Krauss, T. F.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. van Daele, I. Moerman, S. Verstuyft, K. de Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Lardenois, S.

Laval, S.

Lipson, M.

Luyssaert, B.

Lyan, P.

G. Roelkens, D. Vermeulen, D. van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92(13), 131101 (2008).
[CrossRef]

Marti, J.

J. V. Galan, P. Sanchis, J. Blasco, and J. Marti, “Study of High Efficiency Grating Couplers for Silicon-Based Horizontal Slot Waveguides,” IEEE Photon. Technol. Lett. 20(12), 985–987 (2008).
[CrossRef]

MarTis-Morini, D.

Moerman, I.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. van Daele, I. Moerman, S. Verstuyft, K. de Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Morita, H.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Nishihara, H.

T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. 22(6), 845–867 (1986).
[CrossRef]

Nordin, G.

Panepucci, R. R.

Pascal, D.

Roelkens, G.

Sanchis, P.

J. V. Galan, P. Sanchis, J. Blasco, and J. Marti, “Study of High Efficiency Grating Couplers for Silicon-Based Horizontal Slot Waveguides,” IEEE Photon. Technol. Lett. 20(12), 985–987 (2008).
[CrossRef]

Schrauwen, J.

Shoji, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Suhara, T.

T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. 22(6), 845–867 (1986).
[CrossRef]

Taillaert, D.

Tsuchizawa, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

van Campenhout, J.

van Daele, P.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. van Daele, I. Moerman, S. Verstuyft, K. de Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

van Laere, F.

van Thourhout, D.

Vermeulen, D.

G. Roelkens, D. Vermeulen, D. van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92(13), 131101 (2008).
[CrossRef]

Verstuyft, S.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. van Daele, I. Moerman, S. Verstuyft, K. de Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

Vivien, L.

Wang, B.

Watanabe, T.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Weiland, T.

T. Weiland, “Time domain electromagnetic field computation with finite difference methods,” Int. J. Numer. Model. 9(4), 295–319 (1996).
[CrossRef]

Wiaux, V.

Yamada, K.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

Appl. Phys. Lett.

G. Roelkens, D. Vermeulen, D. van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fédéli, “High efficiency diffractive grating couplers for interfacing a single mode optical fiber with a nanophotonic silicon-on-insulator waveguide circuit,” Appl. Phys. Lett. 92(13), 131101 (2008).
[CrossRef]

Electron. Lett.

T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, and H. Morita, “Low loss mode size converter from 0.3 mu m square Si wire waveguides to singlemode fibres,” Electron. Lett. 38(25), 1669–1670 (2002).
[CrossRef]

IEEE J. Quantum Electron.

D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. van Daele, I. Moerman, S. Verstuyft, K. de Mesel, and R. Baets, “An out-of-plane grating coupler for efficient butt-coupling between compact planar waveguides and single-mode fibers,” IEEE J. Quantum Electron. 38(7), 949–955 (2002).
[CrossRef]

T. Suhara and H. Nishihara, “Integrated optics components and devices using periodic structures,” IEEE J. Quantum Electron. 22(6), 845–867 (1986).
[CrossRef]

R. M. Emmons and D. G. Hall, “Buried-oxide silicon-on-insulator structures. II. Waveguide gratingcouplers,” IEEE J. Quantum Electron. 28(1), 164–175 (1992).
[CrossRef]

IEEE Photon. Technol. Lett.

J. V. Galan, P. Sanchis, J. Blasco, and J. Marti, “Study of High Efficiency Grating Couplers for Silicon-Based Horizontal Slot Waveguides,” IEEE Photon. Technol. Lett. 20(12), 985–987 (2008).
[CrossRef]

Int. J. Numer. Model.

T. Weiland, “Time domain electromagnetic field computation with finite difference methods,” Int. J. Numer. Model. 9(4), 295–319 (1996).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Opt. Lett.

Other

G. Roelkens, D. Vermeulen, D. van Thourhout, R. Baets, S. Brision, P. Lyan, P. Gautier, and J. M. Fedeli, “High efficiency SOI fiber-to-waveguide grating couplers fabricated using CMOS technology,” in Integrated Photonics and Nanophotonics Research and Applications, (Optical Society of America, 2008) paper IME3, http://www.opticsinfobase.org/abstract.cfm?URI=IPNRA-2008-IME3

M. Clemens, and T. Weiland, “Discrete electromagnetism with the finite integration technique,” in Geometric Methods for Computational Electromagnetics, PIER. 32, F. L. Teixeira, J. A. Kong, eds., (EMW Publishing, 2001) 65–87.

Available at, www.cst.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Schematic representation of the grating coupler. Light is transmitted from the TE mode of the slab waveguide on the left into the grating and the slots scatter the light into the fiber positioned at angle ϕ. In this figure the wave is scattered at a negative angle which appears in counterclockwise direction with respect to the grating normal.

Fig. 2
Fig. 2

(a) Schematic picture of the coupling banddiagram. Modes above light line scatter light. The scattering angle is a line in the band diagram. To scatter light at small angles ϕ modes close to the second band gap are excited. (b) Reflection coefficient for a directly coupled grating (grey) and a grating with antireflection interface (black), both with grating period a = 701 nm, slot width w = 350 nm and number of slots N = 20. The low reflection of the grating with an antireflection interface is observed at frequencies just before the second band gap.

Fig. 3
Fig. 3

Grating period as a function of slot width, given ϕ = −10° at λ0 . In the range depicted, a should be increased by approximately 1 nm for a change of w by 2 nm to maintain radiation in constant angle ϕ.

Fig. 4
Fig. 4

Radiation efficiency as a function of slot width monotonously increases and reaches saturation after 400 nm.

Fig. 5
Fig. 5

η2 as function of BOX thickness.

Fig. 6
Fig. 6

(a) η3a(w) is almost a constant function of slot width with slightly decreasing values at large slot widths. (b) η1(w)*η3a(w) has a flat maximum. A smaller slot width leads to less radiation efficiency because more power is transmitted through the grating and a larger slot width leads to a narrower radiation such that the mode match efficiency is less.

Fig. 7
Fig. 7

Coupling efficiencies over wavelength for grating with w = 350 nm.

Fig. 8
Fig. 8

Field distribution of the field radiated by the designed uniform grating (red) and of the fundamental mode with 10.4 μm beam diameter (black).

Fig. 9
Fig. 9

(a) Theoretical γ(z) along the grating to achieve a scattered field with a Gaussian distribution. (b) Scattering coefficient γ(w) calculated from simulations, shown with points, and approximated with a square dependence on slot width, shown with a line.

Fig. 10
Fig. 10

(a) η1 as a function of frequency for a chirped grating. Resonances close to the band edge are observed. (b) Radiated field distribution, the overlap integral shows an 80% match with the Gaussian profile of the fiber.

Tables (1)

Tables Icon

Table 1 Optimized grating parameters for wavelength 1.55µm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

η1=PscatteredPtotal=1RT,
η2=PairPScattered,
η3=η3aη3bη3c,
η3a=|(E¯fiber(z')E¯grating(z'))2dz'E¯2fiber(z')dz'E¯2grating(z')dz'|,
η3b=0.97,
η3c=4β1β2(β1+β2)2=0.9663,
η=η1η2η3.
dPdz=2γ(z)P(z),
dPdz=ρEfiber2(z),
ρ=PScattered0LEfiber2(z)dz.
γ(z)=12ρEfiber,n2(z)P(z).
γi=ai1aiγ(x)dxai=γ(ai),

Metrics