Abstract

A five-layer silicon-based nanoplasmonic waveguiding structure is proposed for ultrafast all-optical modulation and switching applications. Ultrafast nonlinear phase and amplitude modulation is achieved via photo-generated free carrier dynamics in ion-implanted silicon using above-bandgap femtosecond pump pulses. Both an analytical model and rigorous numerical simulations of the structures have shown that a switching time of 5ps and an on-off contrast of 35dB can be achieved in these devices.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. I. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics, eds, Springer Series in Optical Sciences, Vol. 131 (Springer, 2007).
  2. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
    [CrossRef] [PubMed]
  3. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
    [CrossRef] [PubMed]
  4. E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
    [CrossRef]
  5. J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
    [CrossRef] [PubMed]
  6. G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally Activated Variable Attenuation of Long-Range Surface Plasmon-Polariton Waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006).
    [CrossRef]
  7. K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A Gigahertz Surface Magneto-Plasmon Optical Modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
    [CrossRef]
  8. K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2008).
    [CrossRef]
  9. K. J. Chau, M. Johnson, and A. Y. Elezzabi, “Electron-spin-dependent terahertz light transport in spintronic-plasmonic media,” Phys. Rev. Lett. 98(13), 133901 (2007).
    [CrossRef] [PubMed]
  10. J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
    [CrossRef]
  11. S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59(25), 3276–3278 (1991).
    [CrossRef]
  12. S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
    [CrossRef]
  13. A. Y. Elezzabi, J. Meyer, M. K. Y. Hughes, and S. R. Johnson, “Generation of 1-ps infrared pulses at 10.6 µm by use of low-temperature-grown GaAs as an optical semiconductor switch,” Opt. Lett. 19(12), 898–900 (1994).
    [CrossRef] [PubMed]
  14. S. Gupta, P. K. Bhattacharya, J. Pamulapati, and G. Mourou, “Subpicosecond photoresponse of carriers in low-temperature molecular beam epitaxial In0.52Al0. 48 As/InP,” Appl. Phys. Lett. 57(15), 1543–1545 (1990).
    [CrossRef]
  15. Y. Kostoulas, L. J. Waxer, I. A. Walmsley, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature-grown indium phosphide,” Appl. Phys. Lett. 66(14), 1821–1823 (1995).
    [CrossRef]
  16. L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
    [CrossRef]
  17. K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Höpfel, “Ultrashort carrier lifetimes in H+ bombarded InP,” Appl. Phys. Lett. 59(8), 926–928 (1991).
    [CrossRef]
  18. M. B. Johnson, T. C. McGill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54(24), 2424–2426 (1989).
    [CrossRef]
  19. A. Y. Elezzabi, J. Meyer, and M. K. Y. Hughes, “600 fs 10.6 µm infrared pulse generation with radiation-damaged GaAs reflection switch,” Appl. Phys. Lett. 66(4), 402–404 (1995).
    [CrossRef]
  20. F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50(8), 460–462 (1987).
    [CrossRef]
  21. P. A. Schumann and R. P. Phillips, “Comparison of classical approximations to free carrier absorption in semiconductors,” Solid-State Electron. 10(9), 943–948 (1967).
    [CrossRef]

2009

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

2008

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2008).
[CrossRef]

2007

K. J. Chau, M. Johnson, and A. Y. Elezzabi, “Electron-spin-dependent terahertz light transport in spintronic-plasmonic media,” Phys. Rev. Lett. 98(13), 133901 (2007).
[CrossRef] [PubMed]

E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

2006

G. Gagnon, N. Lahoud, G. A. Mattiussi, and P. Berini, “Thermally Activated Variable Attenuation of Long-Range Surface Plasmon-Polariton Waves,” J. Lightwave Technol. 24(11), 4391–4402 (2006).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

2004

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A Gigahertz Surface Magneto-Plasmon Optical Modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[CrossRef]

1995

Y. Kostoulas, L. J. Waxer, I. A. Walmsley, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature-grown indium phosphide,” Appl. Phys. Lett. 66(14), 1821–1823 (1995).
[CrossRef]

A. Y. Elezzabi, J. Meyer, and M. K. Y. Hughes, “600 fs 10.6 µm infrared pulse generation with radiation-damaged GaAs reflection switch,” Appl. Phys. Lett. 66(4), 402–404 (1995).
[CrossRef]

1994

1993

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

1992

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
[CrossRef]

1991

K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Höpfel, “Ultrashort carrier lifetimes in H+ bombarded InP,” Appl. Phys. Lett. 59(8), 926–928 (1991).
[CrossRef]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59(25), 3276–3278 (1991).
[CrossRef]

1990

S. Gupta, P. K. Bhattacharya, J. Pamulapati, and G. Mourou, “Subpicosecond photoresponse of carriers in low-temperature molecular beam epitaxial In0.52Al0. 48 As/InP,” Appl. Phys. Lett. 57(15), 1543–1545 (1990).
[CrossRef]

1989

M. B. Johnson, T. C. McGill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54(24), 2424–2426 (1989).
[CrossRef]

1987

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50(8), 460–462 (1987).
[CrossRef]

1967

P. A. Schumann and R. P. Phillips, “Comparison of classical approximations to free carrier absorption in semiconductors,” Solid-State Electron. 10(9), 943–948 (1967).
[CrossRef]

Atwater, H. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Ballingall, J. M.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

Berini, P.

Bhattacharya, P. K.

S. Gupta, P. K. Bhattacharya, J. Pamulapati, and G. Mourou, “Subpicosecond photoresponse of carriers in low-temperature molecular beam epitaxial In0.52Al0. 48 As/InP,” Appl. Phys. Lett. 57(15), 1543–1545 (1990).
[CrossRef]

Bonn, M.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

Calawa, A. R.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59(25), 3276–3278 (1991).
[CrossRef]

Chau, K. J.

K. J. Chau, M. Johnson, and A. Y. Elezzabi, “Electron-spin-dependent terahertz light transport in spintronic-plasmonic media,” Phys. Rev. Lett. 98(13), 133901 (2007).
[CrossRef] [PubMed]

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A Gigahertz Surface Magneto-Plasmon Optical Modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[CrossRef]

Chi, C. C.

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50(8), 460–462 (1987).
[CrossRef]

Diest, K.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

Dionne, J. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Doany, F. E.

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50(8), 460–462 (1987).
[CrossRef]

Elezzabi, A. Y.

K. J. Chau, M. Johnson, and A. Y. Elezzabi, “Electron-spin-dependent terahertz light transport in spintronic-plasmonic media,” Phys. Rev. Lett. 98(13), 133901 (2007).
[CrossRef] [PubMed]

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A Gigahertz Surface Magneto-Plasmon Optical Modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[CrossRef]

A. Y. Elezzabi, J. Meyer, and M. K. Y. Hughes, “600 fs 10.6 µm infrared pulse generation with radiation-damaged GaAs reflection switch,” Appl. Phys. Lett. 66(4), 402–404 (1995).
[CrossRef]

A. Y. Elezzabi, J. Meyer, M. K. Y. Hughes, and S. R. Johnson, “Generation of 1-ps infrared pulses at 10.6 µm by use of low-temperature-grown GaAs as an optical semiconductor switch,” Opt. Lett. 19(12), 898–900 (1994).
[CrossRef] [PubMed]

Fauchet, P. M.

Y. Kostoulas, L. J. Waxer, I. A. Walmsley, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature-grown indium phosphide,” Appl. Phys. Lett. 66(14), 1821–1823 (1995).
[CrossRef]

Frankel, M. Y.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59(25), 3276–3278 (1991).
[CrossRef]

Gagnon, G.

Garcia-Vidal, F. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Gomez Rivas, J.

E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

Grischkowsky, D.

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50(8), 460–462 (1987).
[CrossRef]

Gupta, S.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
[CrossRef]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59(25), 3276–3278 (1991).
[CrossRef]

S. Gupta, P. K. Bhattacharya, J. Pamulapati, and G. Mourou, “Subpicosecond photoresponse of carriers in low-temperature molecular beam epitaxial In0.52Al0. 48 As/InP,” Appl. Phys. Lett. 57(15), 1543–1545 (1990).
[CrossRef]

Hendry, E.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

Hibbins, A. P.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Ho, P.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

Höpfel, R. A.

K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Höpfel, “Ultrashort carrier lifetimes in H+ bombarded InP,” Appl. Phys. Lett. 59(8), 926–928 (1991).
[CrossRef]

Hughes, M. K. Y.

A. Y. Elezzabi, J. Meyer, and M. K. Y. Hughes, “600 fs 10.6 µm infrared pulse generation with radiation-damaged GaAs reflection switch,” Appl. Phys. Lett. 66(4), 402–404 (1995).
[CrossRef]

A. Y. Elezzabi, J. Meyer, M. K. Y. Hughes, and S. R. Johnson, “Generation of 1-ps infrared pulses at 10.6 µm by use of low-temperature-grown GaAs as an optical semiconductor switch,” Opt. Lett. 19(12), 898–900 (1994).
[CrossRef] [PubMed]

Hwang, K. C.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

Irvine, S. E.

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A Gigahertz Surface Magneto-Plasmon Optical Modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[CrossRef]

Johnson, M.

K. J. Chau, M. Johnson, and A. Y. Elezzabi, “Electron-spin-dependent terahertz light transport in spintronic-plasmonic media,” Phys. Rev. Lett. 98(13), 133901 (2007).
[CrossRef] [PubMed]

Johnson, M. B.

M. B. Johnson, T. C. McGill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54(24), 2424–2426 (1989).
[CrossRef]

Johnson, S. R.

Juen, S.

K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Höpfel, “Ultrashort carrier lifetimes in H+ bombarded InP,” Appl. Phys. Lett. 59(8), 926–928 (1991).
[CrossRef]

Kostoulas, Y.

Y. Kostoulas, L. J. Waxer, I. A. Walmsley, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature-grown indium phosphide,” Appl. Phys. Lett. 66(14), 1821–1823 (1995).
[CrossRef]

Kuipers, L.

E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

Lahoud, N.

Lamprecht, K. F.

K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Höpfel, “Ultrashort carrier lifetimes in H+ bombarded InP,” Appl. Phys. Lett. 59(8), 926–928 (1991).
[CrossRef]

Lester, L. F.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

Lockyear, M. J.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

MacDonald, K. F.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2008).
[CrossRef]

Martin-Moreno, L.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Mattiussi, G. A.

Mazurowski, J.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

McGill, T. C.

M. B. Johnson, T. C. McGill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54(24), 2424–2426 (1989).
[CrossRef]

Meyer, J.

A. Y. Elezzabi, J. Meyer, and M. K. Y. Hughes, “600 fs 10.6 µm infrared pulse generation with radiation-damaged GaAs reflection switch,” Appl. Phys. Lett. 66(4), 402–404 (1995).
[CrossRef]

A. Y. Elezzabi, J. Meyer, M. K. Y. Hughes, and S. R. Johnson, “Generation of 1-ps infrared pulses at 10.6 µm by use of low-temperature-grown GaAs as an optical semiconductor switch,” Opt. Lett. 19(12), 898–900 (1994).
[CrossRef] [PubMed]

Mourou, G.

S. Gupta, P. K. Bhattacharya, J. Pamulapati, and G. Mourou, “Subpicosecond photoresponse of carriers in low-temperature molecular beam epitaxial In0.52Al0. 48 As/InP,” Appl. Phys. Lett. 57(15), 1543–1545 (1990).
[CrossRef]

Mourou, G. A.

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
[CrossRef]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59(25), 3276–3278 (1991).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Palmetshofer, L.

K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Höpfel, “Ultrashort carrier lifetimes in H+ bombarded InP,” Appl. Phys. Lett. 59(8), 926–928 (1991).
[CrossRef]

Pamulapati, J.

S. Gupta, P. K. Bhattacharya, J. Pamulapati, and G. Mourou, “Subpicosecond photoresponse of carriers in low-temperature molecular beam epitaxial In0.52Al0. 48 As/InP,” Appl. Phys. Lett. 57(15), 1543–1545 (1990).
[CrossRef]

Paulter, N. G.

M. B. Johnson, T. C. McGill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54(24), 2424–2426 (1989).
[CrossRef]

Phillips, R. P.

P. A. Schumann and R. P. Phillips, “Comparison of classical approximations to free carrier absorption in semiconductors,” Solid-State Electron. 10(9), 943–948 (1967).
[CrossRef]

Polman, A.

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Rivas, J. G.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

Samson, Z. L.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2008).
[CrossRef]

Schumann, P. A.

P. A. Schumann and R. P. Phillips, “Comparison of classical approximations to free carrier absorption in semiconductors,” Solid-State Electron. 10(9), 943–948 (1967).
[CrossRef]

Smith, F. W.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59(25), 3276–3278 (1991).
[CrossRef]

Stockman, M. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2008).
[CrossRef]

Sutliff, J.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

Sweatlock, L. A.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Valdmanis, J. A.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59(25), 3276–3278 (1991).
[CrossRef]

Walmsley, I. A.

Y. Kostoulas, L. J. Waxer, I. A. Walmsley, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature-grown indium phosphide,” Appl. Phys. Lett. 66(14), 1821–1823 (1995).
[CrossRef]

Waxer, L. J.

Y. Kostoulas, L. J. Waxer, I. A. Walmsley, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature-grown indium phosphide,” Appl. Phys. Lett. 66(14), 1821–1823 (1995).
[CrossRef]

Whitaker, J.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

Whitaker, J. F.

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
[CrossRef]

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59(25), 3276–3278 (1991).
[CrossRef]

Wicks, G. W.

Y. Kostoulas, L. J. Waxer, I. A. Walmsley, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature-grown indium phosphide,” Appl. Phys. Lett. 66(14), 1821–1823 (1995).
[CrossRef]

Williamson, S. L.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

Zheludev, N. I.

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2008).
[CrossRef]

Appl. Phys. Lett.

S. Gupta, M. Y. Frankel, J. A. Valdmanis, J. F. Whitaker, G. A. Mourou, F. W. Smith, and A. R. Calawa, “Subpicosecond carrier lifetime in GaAs grown by molecular beam epitaxy at low temperatures,” Appl. Phys. Lett. 59(25), 3276–3278 (1991).
[CrossRef]

S. Gupta, P. K. Bhattacharya, J. Pamulapati, and G. Mourou, “Subpicosecond photoresponse of carriers in low-temperature molecular beam epitaxial In0.52Al0. 48 As/InP,” Appl. Phys. Lett. 57(15), 1543–1545 (1990).
[CrossRef]

Y. Kostoulas, L. J. Waxer, I. A. Walmsley, G. W. Wicks, and P. M. Fauchet, “Femtosecond carrier dynamics in low‐temperature-grown indium phosphide,” Appl. Phys. Lett. 66(14), 1821–1823 (1995).
[CrossRef]

K. F. Lamprecht, S. Juen, L. Palmetshofer, and R. A. Höpfel, “Ultrashort carrier lifetimes in H+ bombarded InP,” Appl. Phys. Lett. 59(8), 926–928 (1991).
[CrossRef]

M. B. Johnson, T. C. McGill, and N. G. Paulter, “Carrier lifetimes in ion-damaged GaAs,” Appl. Phys. Lett. 54(24), 2424–2426 (1989).
[CrossRef]

A. Y. Elezzabi, J. Meyer, and M. K. Y. Hughes, “600 fs 10.6 µm infrared pulse generation with radiation-damaged GaAs reflection switch,” Appl. Phys. Lett. 66(4), 402–404 (1995).
[CrossRef]

F. E. Doany, D. Grischkowsky, and C. C. Chi, “Carrier lifetime versus ion-implantation dose in silicon on sapphire,” Appl. Phys. Lett. 50(8), 460–462 (1987).
[CrossRef]

IEEE J. Quantum Electron.

S. Gupta, J. F. Whitaker, and G. A. Mourou, “Ultrafast carrier dynamics in III-V semiconductors grown by molecular beam epitaxy at very low substrate temperatures,” IEEE J. Quantum Electron. 28(10), 2464–2472 (1992).
[CrossRef]

K. J. Chau, S. E. Irvine, and A. Y. Elezzabi, “A Gigahertz Surface Magneto-Plasmon Optical Modulator,” IEEE J. Quantum Electron. 40(5), 571–579 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

L. F. Lester, K. C. Hwang, P. Ho, J. Mazurowski, J. M. Ballingall, J. Sutliff, S. Gupta, J. Whitaker, and S. L. Williamson, “Ultrafast long-wavelength photodetectors fabricated on low-temperature InGaAs on GaAs,” IEEE Photon. Technol. Lett. 5(5), 511–514 (1993).
[CrossRef]

J. Lightwave Technol.

Nano Lett.

J. A. Dionne, K. Diest, L. A. Sweatlock, and H. A. Atwater, “PlasMOStor: a metal-oxide-Si field effect plasmonic modulator,” Nano Lett. 9(2), 897–902 (2009).
[CrossRef] [PubMed]

Nat. Photonics

K. F. MacDonald, Z. L. Samson, M. I. Stockman, and N. I. Zheludev, “Ultrafast active plasmonics,” Nat. Photonics 3(1), 55–58 (2008).
[CrossRef]

Opt. Lett.

Phys. Rev. B

E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, “Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays,” Phys. Rev. B 75(23), 235305 (2007).
[CrossRef]

J. A. Dionne, L. A. Sweatlock, H. A. Atwater, and A. Polman, “Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization,” Phys. Rev. B 73(3), 035407 (2006).
[CrossRef]

Phys. Rev. Lett.

E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. G. Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, “Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture,” Phys. Rev. Lett. 100(12), 123901 (2008).
[CrossRef] [PubMed]

K. J. Chau, M. Johnson, and A. Y. Elezzabi, “Electron-spin-dependent terahertz light transport in spintronic-plasmonic media,” Phys. Rev. Lett. 98(13), 133901 (2007).
[CrossRef] [PubMed]

Science

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006).
[CrossRef] [PubMed]

Solid-State Electron.

P. A. Schumann and R. P. Phillips, “Comparison of classical approximations to free carrier absorption in semiconductors,” Solid-State Electron. 10(9), 943–948 (1967).
[CrossRef]

Other

M. I. Brongersma and P. G. Kik, Surface Plasmon Nanophotonics, eds, Springer Series in Optical Sciences, Vol. 131 (Springer, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) A schematic diagram showing the nanoplasmonic waveguide utilized as an ultrafast optical modulator and/or switch for infrared radiation. (b) The device has an air gap of thickness a and the overall distance between the two metal layers is b. (c) Depicts an embodiment of the device realized using ion implanted silicon (II-Si) and silver (Ag) layers fabricated on top of a silicon dioxide (SiO2) layer and a silicon (Si) layers. The device can be fabricated using conventional metal and semiconductor deposition and etching techniques, whereas the free space region is fabricated via focused ion beam milling.

Fig. 2
Fig. 2

(a) Spatial distribution of time-averaged power, <S> normalized to 1 W per unit width in the y-direction for 1550 nm radiation within a five layer waveguide consisting of Ag(100nm):II-Si(150nm):free space(50nm):II-Si(150nm):Ag(100nm) calculated using (a) the analytical model and (b) a finite element solution to Maxwell Eqs. The cross section is taken at the center of the waveguide in panel (c)). (c) The corresponding mode profile inside the waveguide calculated using finite element method numerical solution to Maxwell’s Eqs.

Fig. 3
Fig. 3

(a) Real, ηs(t) , and imaginary, κs(t) , values of the refractive index in the first 6 ps after excitation at various photoexcitation carrier densities ranging from n0/nc = 0.05 to 0.2. (b) βr(t) and βi(t) at the same photoexcitation carrier density range from n0/nc = 0.05 to 0.2 calculated for the (a,d) = (50nm, 150nm) waveguide configuration.

Fig. 4
Fig. 4

Minimum phase, βrmin , and maximum attenuation, βimax , parameters for each set of (a,d) dimensions as a function of n0/nc from 0 to 0.2, for the waveguides having (a,d) = (0nm,150nm), (50nm,150nm), and (100nm,150nm).

Fig. 5
Fig. 5

FDTD intensity distribution of 1550nm signal laser at (a) n0/nc = 0, (b) n0/nc = 0.2, and (c) n0/nc = 1.1 for a Ag(100nm):II-Si(150nm): free space(50nm):II-Si(150nm):Ag(100nm) waveguide.

Fig. 6
Fig. 6

(a) The normalized output intensity of the ultrafast plasmonic switch as a function of time for three modulators. (a) Ag(100nm):II-Si(300nm):Ag(100nm) waveguide, (b)Ag(100nm):II-Si(150nm):free space(50nm):II-Si(150nm):Ag(100nm), and (c) Ag(100nm):II-Si(150nm):free space(100nm):II-Si(150nm):Ag(100nm). Each waveguide modulator configuration is calculated for photoinjected carrier densities of n0/nc = 0 (on state), 0.05, 0.1, 0.15, and 0.2. (d) On-off extinction ratios are calculated as function of the photoinjected carrier densities for the same nanoplasmonic waveguides.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Hy2z2+ki2Hy=0     (i=f,   s,   m)
Hy(z)={coskfz,     z(0,a2)Acosksz+Bsinksz,   zCekmz,z(b2,+),(a2,b2)
Ex(z)=iωε0εiHyz={ikfωε0εfsinkfz,z(0,a2)iksωε0εs(AsinkszBcosksz),z(a2,b2)ikmωε0εmCekmz,z(b2,+)
tan(kfa2)=kmεfkfεm1ksεmkmεstan(ksba2)1+kmεsksεmtan(ksba2)
tan(ksb2)=kmεsksεm
tan(kfa2)=kmkf1kskmtan(ksba2)1+kmkstan(ksba2)
ε(t)=εb'(1n(t)e2εb'εom*ω2ω2τ21+ω2τ2)iεb'(εb"εb'+n(t)e2εb'εom*ω2ωτ1+ω2τ2)
nc=εoεb'm*ω2e21+ω2τ2ω2τ2
n(t)t=noτpsech2(ttoτp)n(t)τc,
S=+Re{EzHy*}dz

Metrics