Abstract

Liquid crystal on Silicon (LCOS) spatial phase modulators offer enhanced possibilities for adaptive optics applications in terms of response velocity and fidelity. Unlike deformable mirrors, they present a capability for reproducing discontinuous phase profiles. This ability also allows an increase in the effective stroke of the device by means of phase wrapping. The latter is only limited by the diffraction related effects that become noticeable as the number of phase cycles increase. In this work we estimated the ranges of generation of the Zernike polynomials as a means for characterizing the performance of the device. Sets of images systematically degraded with the different Zernike polynomials generated using a LCOS phase modulator have been recorded and compared with their theoretical digital counterparts. For each Zernike mode, we have found that image degradation reaches a limit for a certain coefficient value; further increase in the aberration amount has no additional effect in image quality. This behavior is attributed to the intensification of the 0-order diffraction. These results have allowed determining the usable limits of the phase modulator virtually free from diffraction artifacts. The results are particularly important for visual simulation and ophthalmic testing applications, although they are equally interesting for any adaptive optics application with liquid crystal based devices.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Dou and M. K. Giles, "Closed-loop adaptive optics system with a liquid crystal television as a phase retarder," Opt. Lett. 20, 1583-1585 (1995).
    [CrossRef] [PubMed]
  2. G. D. Love, "Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator," Appl. Opt. 36, 1517-1524 (1997).
    [CrossRef] [PubMed]
  3. J. Gourlay, G. D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997).
    [CrossRef]
  4. D. C. Dayton, S. P. Sandven, J.D. Gonglewski, S. Browne, S. Rogers, and S. Mcdermott, "Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm," Opt Express 1, 338-346 (1997), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338.
    [CrossRef] [PubMed]
  5. F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T Hara, "Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display," Opt. Rev. 5, 174-178 (1998).
    [CrossRef]
  6. A. Neil, M. J. Booth, and T. Wilson, "Dynamic wave-front generation for the characterization and testing of optical systems," Opt. Lett. 23, 1849-1851 (1998).
    [CrossRef]
  7. S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. Mcdermott, J. Gallegos, and M. Shilko, "One the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment," Opt. Express 6, 2-7 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-1-2.
    [CrossRef] [PubMed]
  8. D. C. Dayton, S. L. Browne, J. D. Gonglewski, and S. R. Restaino, "Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction," Appl. Opt. 40, 2345-2355 (2001).
    [CrossRef]
  9. S. Kotova, M. Kvashnin, M. Rakhmatulin, O. Zayakin, I. Guralnik, N. Klimov, P. Clark, G. Love, A. Naumov, C. Saunter, M. Loktev, G. Vdovin, and L. Toporkova, "Modal liquid crystal wavefront corrector," Opt. Express 10, 1258-1272 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-22-1258.
    [PubMed]
  10. P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive Optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-4059.
    [CrossRef] [PubMed]
  11. L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, "Phase-only liquid crystal spatial light modulator for wavefront correction with high precision," Opt. Express 12, 6403-6409 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6403.
    [CrossRef] [PubMed]
  12. Y. Liu, Z. Cao, D. Li, Q. Mu, L. Hu, X. Lu, and L. Xuan, "Correction for large aberration with phase-only liquid-crystal wavefront corrector," Opt. Eng. 45, 128001-128005 (2006).
    [CrossRef]
  13. J. Arines, V. Durán, Z. Jaroszewicz, J. Ares, E. Tajahuerce, P. Prado, J. Lancis, S. Bará, and V. Climent, "Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 15, 15287-15292 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15287.
    [CrossRef] [PubMed]
  14. G. Vdovin and P. M. Sarro, "Flexible mirror micromachined en silicon," Appl. Opt. 29, 2968-2972 (1995).
    [CrossRef]
  15. L. Zhu, P-C. Sun, and Y. Fainman, "Aberration-free dynamic focusing with a multichannel micromachined membrane deformable mirror," Appl. Opt. 38, 5350-5354 (1999).
    [CrossRef]
  16. D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
    [CrossRef]
  17. C. Paterson, I Munro, and J. C. Dainty, "A low cost adaptive optics system using a membrane mirror," Opt. Express 6, 175-185 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-6-9-175.
    [CrossRef] [PubMed]
  18. N. Doble, G. Yoon, L. Chen, P. Bierden, B. Singer, S. Olivier, and D. R. Williams, "Use of a microelectromechanical mirror for adaptive optics in the human eye," Opt. Lett. 27, 1537-1539 (2002).
    [CrossRef]
  19. E. J. Fernández and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-9-1056.
    [CrossRef] [PubMed]
  20. E. Dalimier and C. Dainty, "Comparative analysis of deformable mirrors for ocular adaptive optics," Opt. Express 13, 4275-4285 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-4275.
    [CrossRef] [PubMed]
  21. E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-8900.
    [CrossRef] [PubMed]
  22. P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, "Use of adaptive optics to determine the optimal ocular spherical aberration," J. Cataract Refract. Surg. 33, 1721-1726 (2007).
    [CrossRef] [PubMed]
  23. L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, "Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye," Opt. Express 15, 12654-12661 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-12654.
    [CrossRef] [PubMed]
  24. D. C. Dayton, S. L. Browne, S. P. Sandven, J. D. Gonglewski, and A. V. Kudryashov, "Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics," Appl. Opt. 37, 5579-5589 (1998).
    [CrossRef]
  25. D. Dayton, J. Gonglewski, S. Restaino, J. Martin, J. Phillips, M. Hartman, P. Kervin, J. Snodgress, S. Browne, N. Heimann, M. Shilko, R. Pohle, B. Carrion, C. Smith, and D. Thiel, "Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites," Opt. Express 10, 1508-1519 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-25-1508.
    [PubMed]
  26. E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
    [CrossRef] [PubMed]
  27. F. Vargas-Martín, P. M. Prieto, and P. Artal, "Correction of the aberrations in the human eye with a liquid crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998).
    [CrossRef]
  28. E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refrac. Surg. 18, 634-638 (2002).
  29. P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye’s optical aberrations," J. Vision 4, 281-287 (2004), http://journalofvision.org/4/4/4/, doi:10.1167/4.4.4.
    [CrossRef]
  30. E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. of Am. A 22, 1732-1738 (2005).
    [CrossRef]
  31. P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004).
    [CrossRef]
  32. S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, "Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements," Opt. Express 15, 16177-16188 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-16177.
    [CrossRef] [PubMed]
  33. V. Durán, V. Climent, E. Tajahuerce, Z. Jaroszewicz, J. Arines, and S. Bará, "Efficient compensation of Zernike modes and eye aberration patterns using low-cost spatial light modulators," J. Biomed. Opt. 12, 14037-14043 (2007).
    [CrossRef]
  34. Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, "Liquid Crystal based adaptive optics system to compensate both low and high order aberrations in a model eye," Opt. Express 15, 1946-1953 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1946.
    [CrossRef] [PubMed]
  35. D. Miller, L. Thibos, and X. Hong, "Requirements for segmented correctors for diffraction-limited performance in the human eye," Opt. Express 13, 275-289 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-275.
    [CrossRef] [PubMed]
  36. W. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, "High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay," Opt. Express 11, 2053-2059 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-17-2053.
    [CrossRef] [PubMed]
  37. A. Lafong, W. J. Hossack, J. Arlt, T. J. Nowakowski, and N. D. Read, "Time-Multiplexed Laguerre-Gaussian holographic optical tweezers for biological applications," Opt. Express 14, 3065-3072 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-3065.
    [CrossRef] [PubMed]
  38. X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, P. J. Bos, "Performance evaluation of a liquid-crystal-on-silicon spatial light modulator," Opt. Eng. 43, 2769-2774 (2004).
    [CrossRef]
  39. Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, "An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device," Opt. Express 14, 8013-8018 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8013.
    [CrossRef] [PubMed]
  40. Z. Cao, Q. Mu, L. Hu, D. Li, Y. Liu, L. Jin, and L. Xuan, "Correction of horizontal turbulence with nematic liquid crystal wavefront corrector," Opt. Express 16, 7006-7013 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-10-7006.
    [CrossRef] [PubMed]
  41. Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, "Open-loop correction of horizontal turbulence: system design and result," Appl. Opt. 47, 4297-4301 (2008).
    [CrossRef] [PubMed]
  42. H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001).
    [CrossRef]
  43. K. M. Hampson, I. Munro, C. Paterson, and C. Dainty, "Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system," J. Opt. Soc. Am. A 22, 1241-1250 (2005).
    [CrossRef]
  44. R. J. Noll, "Zernike polynomials and atmospheric turbulence," J. Opt. Soc. Am. 66, 207-211 (1976).
    [CrossRef]
  45. J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994).
    [CrossRef]
  46. J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997).
    [CrossRef]
  47. P. M. Prieto, F. Vargas-Martín, S. Goelz, P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
    [CrossRef]
  48. J. W. Goodman, Introduction to Fourier optics, 3rd Edition, (Roberts and Company, Publishers, Englewood, CO, 2005).
  49. P. Artal, "Calculations of the 2-dimensional foveal retinal images in real eyes," J. Opt. Soc. Am. A 7, 1374-1381 (1990).
    [CrossRef] [PubMed]
  50. R. Román, J. J. Quesada, and J. Martínez, "Multiresolution-information analysis for images," Signal Process. 24, 77-91 (1991).
    [CrossRef]
  51. E. N. Kirsanova and M. G. Sadovsky, "Entropy approach in the analysis of anisotropy of digital images," Open Syst. Inf. Dyn. 9, 239-250 (2002).
    [CrossRef]
  52. P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, "Perceptual blur and ringing metrics: application to JPEG2000," Signal Process. 19, 163-172 (2004).
  53. S. Gabarda and G. Cristóbal, "Blind image quality assessment through anisotropy," J. Opt. Soc. Am. A 24, 42-51 (2007).
    [CrossRef]
  54. J. S. McLellan, P. M. Prieto, S. Marcos, S. A. Burns, "Effects of interactions among wave aberrations on optical image quality," Vision Res. 46, 3009-3016 (2006).
    [CrossRef] [PubMed]
  55. P. M. Prieto, F. Vargas-Martín, J. S. McLellan, and S. A. Burns, "Effect of the polarization on ocular wave aberration measurements," J. Opt. Soc. Am. A 19, 809-814 (2002).
    [CrossRef]

2008 (2)

2007 (7)

Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, "Liquid Crystal based adaptive optics system to compensate both low and high order aberrations in a model eye," Opt. Express 15, 1946-1953 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1946.
[CrossRef] [PubMed]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, "Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye," Opt. Express 15, 12654-12661 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-12654.
[CrossRef] [PubMed]

J. Arines, V. Durán, Z. Jaroszewicz, J. Ares, E. Tajahuerce, P. Prado, J. Lancis, S. Bará, and V. Climent, "Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 15, 15287-15292 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15287.
[CrossRef] [PubMed]

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, "Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements," Opt. Express 15, 16177-16188 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-16177.
[CrossRef] [PubMed]

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, "Use of adaptive optics to determine the optimal ocular spherical aberration," J. Cataract Refract. Surg. 33, 1721-1726 (2007).
[CrossRef] [PubMed]

V. Durán, V. Climent, E. Tajahuerce, Z. Jaroszewicz, J. Arines, and S. Bará, "Efficient compensation of Zernike modes and eye aberration patterns using low-cost spatial light modulators," J. Biomed. Opt. 12, 14037-14043 (2007).
[CrossRef]

S. Gabarda and G. Cristóbal, "Blind image quality assessment through anisotropy," J. Opt. Soc. Am. A 24, 42-51 (2007).
[CrossRef]

2006 (5)

2005 (5)

E. Dalimier and C. Dainty, "Comparative analysis of deformable mirrors for ocular adaptive optics," Opt. Express 13, 4275-4285 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-4275.
[CrossRef] [PubMed]

K. M. Hampson, I. Munro, C. Paterson, and C. Dainty, "Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system," J. Opt. Soc. Am. A 22, 1241-1250 (2005).
[CrossRef]

D. Miller, L. Thibos, and X. Hong, "Requirements for segmented correctors for diffraction-limited performance in the human eye," Opt. Express 13, 275-289 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-275.
[CrossRef] [PubMed]

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. of Am. A 22, 1732-1738 (2005).
[CrossRef]

2004 (6)

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004).
[CrossRef]

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, P. J. Bos, "Performance evaluation of a liquid-crystal-on-silicon spatial light modulator," Opt. Eng. 43, 2769-2774 (2004).
[CrossRef]

P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, "Perceptual blur and ringing metrics: application to JPEG2000," Signal Process. 19, 163-172 (2004).

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye’s optical aberrations," J. Vision 4, 281-287 (2004), http://journalofvision.org/4/4/4/, doi:10.1167/4.4.4.
[CrossRef]

L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, "Phase-only liquid crystal spatial light modulator for wavefront correction with high precision," Opt. Express 12, 6403-6409 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6403.
[CrossRef] [PubMed]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive Optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-4059.
[CrossRef] [PubMed]

2003 (2)

2002 (6)

2001 (2)

2000 (4)

1999 (1)

1998 (4)

1997 (4)

J. Gourlay, G. D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997).
[CrossRef]

D. C. Dayton, S. P. Sandven, J.D. Gonglewski, S. Browne, S. Rogers, and S. Mcdermott, "Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm," Opt Express 1, 338-346 (1997), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338.
[CrossRef] [PubMed]

J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997).
[CrossRef]

G. D. Love, "Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator," Appl. Opt. 36, 1517-1524 (1997).
[CrossRef] [PubMed]

1995 (2)

1994 (1)

1991 (1)

R. Román, J. J. Quesada, and J. Martínez, "Multiresolution-information analysis for images," Signal Process. 24, 77-91 (1991).
[CrossRef]

1990 (1)

1976 (1)

Ahnelt, P.

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Anderson, J. E.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, P. J. Bos, "Performance evaluation of a liquid-crystal-on-silicon spatial light modulator," Opt. Eng. 43, 2769-2774 (2004).
[CrossRef]

Aragón, J. L.

Ares, J.

Arines, J

Arines, J.

V. Durán, V. Climent, E. Tajahuerce, Z. Jaroszewicz, J. Arines, and S. Bará, "Efficient compensation of Zernike modes and eye aberration patterns using low-cost spatial light modulators," J. Biomed. Opt. 12, 14037-14043 (2007).
[CrossRef]

Arlt, J.

Artal, P.

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, "Use of adaptive optics to determine the optimal ocular spherical aberration," J. Cataract Refract. Surg. 33, 1721-1726 (2007).
[CrossRef] [PubMed]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, "Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye," Opt. Express 15, 12654-12661 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-12654.
[CrossRef] [PubMed]

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, "Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements," Opt. Express 15, 16177-16188 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-16177.
[CrossRef] [PubMed]

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. of Am. A 22, 1732-1738 (2005).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye’s optical aberrations," J. Vision 4, 281-287 (2004), http://journalofvision.org/4/4/4/, doi:10.1167/4.4.4.
[CrossRef]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive Optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-4059.
[CrossRef] [PubMed]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004).
[CrossRef]

E. J. Fernández and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-9-1056.
[CrossRef] [PubMed]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refrac. Surg. 18, 634-638 (2002).

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
[CrossRef]

F. Vargas-Martín, P. M. Prieto, and P. Artal, "Correction of the aberrations in the human eye with a liquid crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998).
[CrossRef]

P. Artal, "Calculations of the 2-dimensional foveal retinal images in real eyes," J. Opt. Soc. Am. A 7, 1374-1381 (1990).
[CrossRef] [PubMed]

Ayala, D. B.

Baker, J.

Bará, S.

V. Durán, V. Climent, E. Tajahuerce, Z. Jaroszewicz, J. Arines, and S. Bará, "Efficient compensation of Zernike modes and eye aberration patterns using low-cost spatial light modulators," J. Biomed. Opt. 12, 14037-14043 (2007).
[CrossRef]

Bará,, S.

Bierden, P.

Bille, J. F.

Birch, M.

Birch, P.M.

J. Gourlay, G. D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997).
[CrossRef]

Booth, M. J.

Bos, P. J.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, P. J. Bos, "Performance evaluation of a liquid-crystal-on-silicon spatial light modulator," Opt. Eng. 43, 2769-2774 (2004).
[CrossRef]

Browne, S.

D. Dayton, J. Gonglewski, S. Restaino, J. Martin, J. Phillips, M. Hartman, P. Kervin, J. Snodgress, S. Browne, N. Heimann, M. Shilko, R. Pohle, B. Carrion, C. Smith, and D. Thiel, "Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites," Opt. Express 10, 1508-1519 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-25-1508.
[PubMed]

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

D. C. Dayton, S. P. Sandven, J.D. Gonglewski, S. Browne, S. Rogers, and S. Mcdermott, "Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm," Opt Express 1, 338-346 (1997), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338.
[CrossRef] [PubMed]

Browne, S. L.

Burns, S. A.

J. S. McLellan, P. M. Prieto, S. Marcos, S. A. Burns, "Effects of interactions among wave aberrations on optical image quality," Vision Res. 46, 3009-3016 (2006).
[CrossRef] [PubMed]

P. M. Prieto, F. Vargas-Martín, J. S. McLellan, and S. A. Burns, "Effect of the polarization on ocular wave aberration measurements," J. Opt. Soc. Am. A 19, 809-814 (2002).
[CrossRef]

Cao, Z.

Carrion, B.

Chen, L.

Clark, P.

Climent, V.

J. Arines, V. Durán, Z. Jaroszewicz, J. Ares, E. Tajahuerce, P. Prado, J. Lancis, S. Bará, and V. Climent, "Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 15, 15287-15292 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15287.
[CrossRef] [PubMed]

V. Durán, V. Climent, E. Tajahuerce, Z. Jaroszewicz, J. Arines, and S. Bará, "Efficient compensation of Zernike modes and eye aberration patterns using low-cost spatial light modulators," J. Biomed. Opt. 12, 14037-14043 (2007).
[CrossRef]

Crain, J.

Cristóbal, G.

S. Gabarda and G. Cristóbal, "Blind image quality assessment through anisotropy," J. Opt. Soc. Am. A 24, 42-51 (2007).
[CrossRef]

Dainty, C.

Dainty, J. C.

Dalimier, E.

Dayton, D.

Dayton, D. C.

Doble, N.

Dou, R.

Drexler, W.

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Dufaux, F.

P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, "Perceptual blur and ringing metrics: application to JPEG2000," Signal Process. 19, 163-172 (2004).

Durán, V.

J. Arines, V. Durán, Z. Jaroszewicz, J. Ares, E. Tajahuerce, P. Prado, J. Lancis, S. Bará, and V. Climent, "Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 15, 15287-15292 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15287.
[CrossRef] [PubMed]

V. Durán, V. Climent, E. Tajahuerce, Z. Jaroszewicz, J. Arines, and S. Bará, "Efficient compensation of Zernike modes and eye aberration patterns using low-cost spatial light modulators," J. Biomed. Opt. 12, 14037-14043 (2007).
[CrossRef]

Ebrahimi, T.

P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, "Perceptual blur and ringing metrics: application to JPEG2000," Signal Process. 19, 163-172 (2004).

Fainman, Y.

Fernández, E. J.

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. of Am. A 22, 1732-1738 (2005).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye’s optical aberrations," J. Vision 4, 281-287 (2004), http://journalofvision.org/4/4/4/, doi:10.1167/4.4.4.
[CrossRef]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive Optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-4059.
[CrossRef] [PubMed]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004).
[CrossRef]

E. J. Fernández and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-9-1056.
[CrossRef] [PubMed]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refrac. Surg. 18, 634-638 (2002).

Gabarda, S.

S. Gabarda and G. Cristóbal, "Blind image quality assessment through anisotropy," J. Opt. Soc. Am. A 24, 42-51 (2007).
[CrossRef]

Gallegos, J.

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. Mcdermott, J. Gallegos, and M. Shilko, "One the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment," Opt. Express 6, 2-7 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-1-2.
[CrossRef] [PubMed]

Giles, M. K.

Goelz, S.

Gonglewski, J.

Gonglewski, J. D.

Gonglewski, J.D.

D. C. Dayton, S. P. Sandven, J.D. Gonglewski, S. Browne, S. Rogers, and S. Mcdermott, "Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm," Opt Express 1, 338-346 (1997), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338.
[CrossRef] [PubMed]

Gorceix, N.

Gourlay, J.

J. Gourlay, G. D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997).
[CrossRef]

Grimm, B.

Guralnik, I.

Gustafsson, J.

Hampson, K. M.

Hara, T

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T Hara, "Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display," Opt. Rev. 5, 174-178 (1998).
[CrossRef]

Hartman, M.

Heggarty, K.

Heimann, N.

Hermann, B.

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Hofer, H.

Hong, X.

Hossack, W.

Hossack, W. J.

Hu, L.

Igasaki, Y.

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T Hara, "Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display," Opt. Rev. 5, 174-178 (1998).
[CrossRef]

Inoue, T.

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T Hara, "Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display," Opt. Rev. 5, 174-178 (1998).
[CrossRef]

Jaroszewicz, Z.

J. Arines, V. Durán, Z. Jaroszewicz, J. Ares, E. Tajahuerce, P. Prado, J. Lancis, S. Bará, and V. Climent, "Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 15, 15287-15292 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15287.
[CrossRef] [PubMed]

V. Durán, V. Climent, E. Tajahuerce, Z. Jaroszewicz, J. Arines, and S. Bará, "Efficient compensation of Zernike modes and eye aberration patterns using low-cost spatial light modulators," J. Biomed. Opt. 12, 14037-14043 (2007).
[CrossRef]

Jin, L.

Kervin, P.

Kirsanova, E. N.

E. N. Kirsanova and M. G. Sadovsky, "Entropy approach in the analysis of anisotropy of digital images," Open Syst. Inf. Dyn. 9, 239-250 (2002).
[CrossRef]

Klimov, N.

Kobayashi, Y.

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T Hara, "Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display," Opt. Rev. 5, 174-178 (1998).
[CrossRef]

Kotova, S.

Kudryashov, A. V.

Kvashnin, M.

Lafong, A.

Lancis, J.

Leitgeb, R.

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Li, D.

Li, F. H.

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T Hara, "Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display," Opt. Rev. 5, 174-178 (1998).
[CrossRef]

Liang, J.

Lindacher, J. M.

Liu, Y.

Loktev, M.

Love, G.

Love, G. D.

J. Gourlay, G. D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997).
[CrossRef]

G. D. Love, "Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator," Appl. Opt. 36, 1517-1524 (1997).
[CrossRef] [PubMed]

Lu, X.

Y. Liu, Z. Cao, D. Li, Q. Mu, L. Hu, X. Lu, and L. Xuan, "Correction for large aberration with phase-only liquid-crystal wavefront corrector," Opt. Eng. 45, 128001-128005 (2006).
[CrossRef]

Lundström, L.

Manzanera, S.

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, "Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye," Opt. Express 15, 12654-12661 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-12654.
[CrossRef] [PubMed]

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, "Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements," Opt. Express 15, 16177-16188 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-16177.
[CrossRef] [PubMed]

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, "Use of adaptive optics to determine the optimal ocular spherical aberration," J. Cataract Refract. Surg. 33, 1721-1726 (2007).
[CrossRef] [PubMed]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive Optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-4059.
[CrossRef] [PubMed]

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004).
[CrossRef]

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye’s optical aberrations," J. Vision 4, 281-287 (2004), http://journalofvision.org/4/4/4/, doi:10.1167/4.4.4.
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refrac. Surg. 18, 634-638 (2002).

Marcos, S.

J. S. McLellan, P. M. Prieto, S. Marcos, S. A. Burns, "Effects of interactions among wave aberrations on optical image quality," Vision Res. 46, 3009-3016 (2006).
[CrossRef] [PubMed]

Martin, J.

Martínez, J.

R. Román, J. J. Quesada, and J. Martínez, "Multiresolution-information analysis for images," Signal Process. 24, 77-91 (1991).
[CrossRef]

Marziliano, P.

P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, "Perceptual blur and ringing metrics: application to JPEG2000," Signal Process. 19, 163-172 (2004).

McDermott, S.

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. Mcdermott, J. Gallegos, and M. Shilko, "One the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment," Opt. Express 6, 2-7 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-1-2.
[CrossRef] [PubMed]

D. C. Dayton, S. P. Sandven, J.D. Gonglewski, S. Browne, S. Rogers, and S. Mcdermott, "Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm," Opt Express 1, 338-346 (1997), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338.
[CrossRef] [PubMed]

McLellan, J. S.

J. S. McLellan, P. M. Prieto, S. Marcos, S. A. Burns, "Effects of interactions among wave aberrations on optical image quality," Vision Res. 46, 3009-3016 (2006).
[CrossRef] [PubMed]

P. M. Prieto, F. Vargas-Martín, J. S. McLellan, and S. A. Burns, "Effect of the polarization on ocular wave aberration measurements," J. Opt. Soc. Am. A 19, 809-814 (2002).
[CrossRef]

Miller, D.

Miranda, F.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, P. J. Bos, "Performance evaluation of a liquid-crystal-on-silicon spatial light modulator," Opt. Eng. 43, 2769-2774 (2004).
[CrossRef]

Mu, Q.

Mukohzaka, N.

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T Hara, "Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display," Opt. Rev. 5, 174-178 (1998).
[CrossRef]

Munro, I

Munro, I.

Naumov, A.

Neil, A.

Noll, R. J.

Norrby, S.

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004).
[CrossRef]

Nowakowski, T. J.

Olivier, S.

Paterson, C.

Phillips, J.

Piers, P.

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004).
[CrossRef]

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refrac. Surg. 18, 634-638 (2002).

Piers, P. A.

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, "Use of adaptive optics to determine the optimal ocular spherical aberration," J. Cataract Refract. Surg. 33, 1721-1726 (2007).
[CrossRef] [PubMed]

Pohle, R.

Pouch, J.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, P. J. Bos, "Performance evaluation of a liquid-crystal-on-silicon spatial light modulator," Opt. Eng. 43, 2769-2774 (2004).
[CrossRef]

Povazay, B.

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Prado, P.

Prieto, P. M.

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, "Use of adaptive optics to determine the optimal ocular spherical aberration," J. Cataract Refract. Surg. 33, 1721-1726 (2007).
[CrossRef] [PubMed]

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, "Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements," Opt. Express 15, 16177-16188 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-16177.
[CrossRef] [PubMed]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, "Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye," Opt. Express 15, 12654-12661 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-12654.
[CrossRef] [PubMed]

J. S. McLellan, P. M. Prieto, S. Marcos, S. A. Burns, "Effects of interactions among wave aberrations on optical image quality," Vision Res. 46, 3009-3016 (2006).
[CrossRef] [PubMed]

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive Optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-4059.
[CrossRef] [PubMed]

P. M. Prieto, F. Vargas-Martín, J. S. McLellan, and S. A. Burns, "Effect of the polarization on ocular wave aberration measurements," J. Opt. Soc. Am. A 19, 809-814 (2002).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
[CrossRef]

F. Vargas-Martín, P. M. Prieto, and P. Artal, "Correction of the aberrations in the human eye with a liquid crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998).
[CrossRef]

Purvis, A.

J. Gourlay, G. D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997).
[CrossRef]

Quesada, J. J.

R. Román, J. J. Quesada, and J. Martínez, "Multiresolution-information analysis for images," Signal Process. 24, 77-91 (1991).
[CrossRef]

Rakhmatulin, M.

Read, N. D.

Restaino, S.

Restaino, S. R.

Rogers, S.

S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. Mcdermott, J. Gallegos, and M. Shilko, "One the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment," Opt. Express 6, 2-7 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-1-2.
[CrossRef] [PubMed]

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

D. C. Dayton, S. P. Sandven, J.D. Gonglewski, S. Browne, S. Rogers, and S. Mcdermott, "Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm," Opt Express 1, 338-346 (1997), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338.
[CrossRef] [PubMed]

Román, R.

R. Román, J. J. Quesada, and J. Martínez, "Multiresolution-information analysis for images," Signal Process. 24, 77-91 (1991).
[CrossRef]

Sadovsky, M. G.

E. N. Kirsanova and M. G. Sadovsky, "Entropy approach in the analysis of anisotropy of digital images," Open Syst. Inf. Dyn. 9, 239-250 (2002).
[CrossRef]

Sandven, S. P.

D. C. Dayton, S. L. Browne, S. P. Sandven, J. D. Gonglewski, and A. V. Kudryashov, "Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics," Appl. Opt. 37, 5579-5589 (1998).
[CrossRef]

D. C. Dayton, S. P. Sandven, J.D. Gonglewski, S. Browne, S. Rogers, and S. Mcdermott, "Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm," Opt Express 1, 338-346 (1997), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338.
[CrossRef] [PubMed]

Sarro, P. M.

G. Vdovin and P. M. Sarro, "Flexible mirror micromachined en silicon," Appl. Opt. 29, 2968-2972 (1995).
[CrossRef]

Sattmann, H.

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Saunter, C.

Sharples, R.M.

J. Gourlay, G. D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997).
[CrossRef]

Shilko, M.

Singer, B.

Smith, C.

Snodgress, J.

Sun, P-C.

Tajahuerce, E.

V. Durán, V. Climent, E. Tajahuerce, Z. Jaroszewicz, J. Arines, and S. Bará, "Efficient compensation of Zernike modes and eye aberration patterns using low-cost spatial light modulators," J. Biomed. Opt. 12, 14037-14043 (2007).
[CrossRef]

J. Arines, V. Durán, Z. Jaroszewicz, J. Ares, E. Tajahuerce, P. Prado, J. Lancis, S. Bará, and V. Climent, "Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 15, 15287-15292 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15287.
[CrossRef] [PubMed]

Theofanidou, E.

Thibos, L.

Thiel, D.

Toporkova, L.

Toyoda, H.

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T Hara, "Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display," Opt. Rev. 5, 174-178 (1998).
[CrossRef]

Unsbo, P.

Unterhuber, A.

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Vabre, L.

Vaidyanathan, M.

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

Vargas-Martín, F.

Vdovin, G.

Wang, B.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, P. J. Bos, "Performance evaluation of a liquid-crystal-on-silicon spatial light modulator," Opt. Eng. 43, 2769-2774 (2004).
[CrossRef]

Wang, X.

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, P. J. Bos, "Performance evaluation of a liquid-crystal-on-silicon spatial light modulator," Opt. Eng. 43, 2769-2774 (2004).
[CrossRef]

Williams, D. R.

Wilson, T.

Winkler, S.

P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, "Perceptual blur and ringing metrics: application to JPEG2000," Signal Process. 19, 163-172 (2004).

Xuan, L.

Yoon, G.

Yoshida, N.

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T Hara, "Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display," Opt. Rev. 5, 174-178 (1998).
[CrossRef]

Zayakin, O.

Zhu, L.

Appl. Opt. (6)

Invest. Ophthalmol. Visual Sci. (1)

P. Piers, E. J. Fernández, S. Manzanera, S. Norrby, and P. Artal, "Adaptive optics simulation of intraocular lenses with modified spherical aberration," Invest. Ophthalmol. Visual Sci. 45, 4601-4610 (2004).
[CrossRef]

J. Biomed. Opt. (1)

V. Durán, V. Climent, E. Tajahuerce, Z. Jaroszewicz, J. Arines, and S. Bará, "Efficient compensation of Zernike modes and eye aberration patterns using low-cost spatial light modulators," J. Biomed. Opt. 12, 14037-14043 (2007).
[CrossRef]

J. Cataract Refract. Surg. (1)

P. A. Piers, S. Manzanera, P. M. Prieto, N. Gorceix, and P. Artal, "Use of adaptive optics to determine the optimal ocular spherical aberration," J. Cataract Refract. Surg. 33, 1721-1726 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (9)

S. Gabarda and G. Cristóbal, "Blind image quality assessment through anisotropy," J. Opt. Soc. Am. A 24, 42-51 (2007).
[CrossRef]

J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor," J. Opt. Soc. Am. A 11, 1949-1957 (1994).
[CrossRef]

F. Vargas-Martín, P. M. Prieto, and P. Artal, "Correction of the aberrations in the human eye with a liquid crystal spatial light modulator: limits to performance," J. Opt. Soc. Am. A 15, 2552-2562 (1998).
[CrossRef]

J. Liang and D. R. Williams, "Aberrations and retinal image quality of the normal human eye," J. Opt. Soc. Am. A 14, 2873-2883 (1997).
[CrossRef]

P. Artal, "Calculations of the 2-dimensional foveal retinal images in real eyes," J. Opt. Soc. Am. A 7, 1374-1381 (1990).
[CrossRef] [PubMed]

P. M. Prieto, F. Vargas-Martín, J. S. McLellan, and S. A. Burns, "Effect of the polarization on ocular wave aberration measurements," J. Opt. Soc. Am. A 19, 809-814 (2002).
[CrossRef]

H. Hofer, P. Artal, B. Singer, J. L. Aragón, and D. R. Williams, "Dynamics of the eye’s wave aberration," J. Opt. Soc. Am. A 18, 497-506 (2001).
[CrossRef]

P. M. Prieto, F. Vargas-Martín, S. Goelz, P. Artal, "Analysis of the performance of the Hartmann-Shack sensor in the human eye," J. Opt. Soc. Am. A 17, 1388-1398 (2000).
[CrossRef]

K. M. Hampson, I. Munro, C. Paterson, and C. Dainty, "Weak correlation between the aberration dynamics of the human eye and the cardiopulmonary system," J. Opt. Soc. Am. A 22, 1241-1250 (2005).
[CrossRef]

J. Opt. Soc. of Am. A (1)

E. J. Fernández and P. Artal, "Study on the effects of monochromatic aberrations in the accommodation response by using adaptive optics," J. Opt. Soc. of Am. A 22, 1732-1738 (2005).
[CrossRef]

J. Refrac. Surg. (1)

E. J. Fernández, S. Manzanera, P. Piers, and P. Artal, "Adaptive optics visual simulator," J. Refrac. Surg. 18, 634-638 (2002).

J. Vision (1)

P. Artal, L. Chen, E. J. Fernández, B. Singer, S. Manzanera, and D. R. Williams, "Neural compensation for the eye’s optical aberrations," J. Vision 4, 281-287 (2004), http://journalofvision.org/4/4/4/, doi:10.1167/4.4.4.
[CrossRef]

Open Syst. Inf. Dyn. (1)

E. N. Kirsanova and M. G. Sadovsky, "Entropy approach in the analysis of anisotropy of digital images," Open Syst. Inf. Dyn. 9, 239-250 (2002).
[CrossRef]

Opt Express (1)

D. C. Dayton, S. P. Sandven, J.D. Gonglewski, S. Browne, S. Rogers, and S. Mcdermott, "Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm," Opt Express 1, 338-346 (1997), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338.
[CrossRef] [PubMed]

Opt. Commun. (2)

J. Gourlay, G. D. Love, P.M. Birch, R.M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997).
[CrossRef]

D. Dayton, S. Restaino, J. Gonglewski, J. Gallegos, S. McDermott, S. Browne, S. Rogers, M. Vaidyanathan, and M. Shilko, "Laboratory and field demonstration of low cost membrane mirror adaptive optics system," Opt. Commun. 176, 339-345 (2000).
[CrossRef]

Opt. Eng. (2)

X. Wang, B. Wang, J. Pouch, F. Miranda, J. E. Anderson, P. J. Bos, "Performance evaluation of a liquid-crystal-on-silicon spatial light modulator," Opt. Eng. 43, 2769-2774 (2004).
[CrossRef]

Y. Liu, Z. Cao, D. Li, Q. Mu, L. Hu, X. Lu, and L. Xuan, "Correction for large aberration with phase-only liquid-crystal wavefront corrector," Opt. Eng. 45, 128001-128005 (2006).
[CrossRef]

Opt. Express (18)

S. R. Restaino, D. C. Dayton, S. L. Browne, J. Gonglewski, J. Baker, S. Rogers, S. Mcdermott, J. Gallegos, and M. Shilko, "One the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment," Opt. Express 6, 2-7 (2000), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-1-2.
[CrossRef] [PubMed]

C. Paterson, I Munro, and J. C. Dainty, "A low cost adaptive optics system using a membrane mirror," Opt. Express 6, 175-185 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-6-9-175.
[CrossRef] [PubMed]

A. Lafong, W. J. Hossack, J. Arlt, T. J. Nowakowski, and N. D. Read, "Time-Multiplexed Laguerre-Gaussian holographic optical tweezers for biological applications," Opt. Express 14, 3065-3072 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-7-3065.
[CrossRef] [PubMed]

Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, "An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device," Opt. Express 14, 8013-8018 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-18-8013.
[CrossRef] [PubMed]

E. J. Fernández, L. Vabre, B. Hermann, A. Unterhuber, B. Povazay, and W. Drexler, "Adaptive optics with a magnetic deformable mirror: applications in the human eye," Opt. Express 14, 8900-8917 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-20-8900.
[CrossRef] [PubMed]

Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, "Liquid Crystal based adaptive optics system to compensate both low and high order aberrations in a model eye," Opt. Express 15, 1946-1953 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-4-1946.
[CrossRef] [PubMed]

L. Lundström, S. Manzanera, P. M. Prieto, D. B. Ayala, N. Gorceix, J. Gustafsson, P. Unsbo, and P. Artal, "Effect of optical correction and remaining aberrations on peripheral resolution acuity in the human eye," Opt. Express 15, 12654-12661 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-20-12654.
[CrossRef] [PubMed]

J. Arines, V. Durán, Z. Jaroszewicz, J. Ares, E. Tajahuerce, P. Prado, J. Lancis, S. Bará, and V. Climent, "Measurement and compensation of optical aberrations using a single spatial light modulator,” Opt. Express 15, 15287-15292 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-23-15287.
[CrossRef] [PubMed]

S. Manzanera, P. M. Prieto, D. B. Ayala, J. M. Lindacher, and P. Artal, "Liquid crystal Adaptive Optics Visual Simulator: Application to testing and design of ophthalmic optical elements," Opt. Express 15, 16177-16188 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-24-16177.
[CrossRef] [PubMed]

Z. Cao, Q. Mu, L. Hu, D. Li, Y. Liu, L. Jin, and L. Xuan, "Correction of horizontal turbulence with nematic liquid crystal wavefront corrector," Opt. Express 16, 7006-7013 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-10-7006.
[CrossRef] [PubMed]

S. Kotova, M. Kvashnin, M. Rakhmatulin, O. Zayakin, I. Guralnik, N. Klimov, P. Clark, G. Love, A. Naumov, C. Saunter, M. Loktev, G. Vdovin, and L. Toporkova, "Modal liquid crystal wavefront corrector," Opt. Express 10, 1258-1272 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-22-1258.
[PubMed]

D. Dayton, J. Gonglewski, S. Restaino, J. Martin, J. Phillips, M. Hartman, P. Kervin, J. Snodgress, S. Browne, N. Heimann, M. Shilko, R. Pohle, B. Carrion, C. Smith, and D. Thiel, "Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites," Opt. Express 10, 1508-1519 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-25-1508.
[PubMed]

E. J. Fernández and P. Artal, "Membrane deformable mirror for adaptive optics: performance limits in visual optics," Opt. Express 11, 1056-1069 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-9-1056.
[CrossRef] [PubMed]

W. Hossack, E. Theofanidou, J. Crain, K. Heggarty, and M. Birch, "High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay," Opt. Express 11, 2053-2059 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-17-2053.
[CrossRef] [PubMed]

P. M. Prieto, E. J. Fernández, S. Manzanera, and P. Artal, "Adaptive Optics with a programmable phase modulator: applications in the human eye," Opt. Express 12, 4059-4071 (2004), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-12-17-4059.
[CrossRef] [PubMed]

D. Miller, L. Thibos, and X. Hong, "Requirements for segmented correctors for diffraction-limited performance in the human eye," Opt. Express 13, 275-289 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-1-275.
[CrossRef] [PubMed]

L. Hu, L. Xuan, Y. Liu, Z. Cao, D. Li, and Q. Mu, "Phase-only liquid crystal spatial light modulator for wavefront correction with high precision," Opt. Express 12, 6403-6409 (2004), http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-26-6403.
[CrossRef] [PubMed]

E. Dalimier and C. Dainty, "Comparative analysis of deformable mirrors for ocular adaptive optics," Opt. Express 13, 4275-4285 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-11-4275.
[CrossRef] [PubMed]

Opt. Lett. (3)

Opt. Rev. (1)

F. H. Li, N. Mukohzaka, N. Yoshida, Y. Igasaki, H. Toyoda, T. Inoue, Y. Kobayashi, and T Hara, "Phase modulation characteristics analysis of optically-addressed parallel-aligned nematic liquid crystal phase-only spatial light modulator combined with a liquid crystal display," Opt. Rev. 5, 174-178 (1998).
[CrossRef]

Signal Process. (2)

P. Marziliano, F. Dufaux, S. Winkler, and T. Ebrahimi, "Perceptual blur and ringing metrics: application to JPEG2000," Signal Process. 19, 163-172 (2004).

R. Román, J. J. Quesada, and J. Martínez, "Multiresolution-information analysis for images," Signal Process. 24, 77-91 (1991).
[CrossRef]

Vision Res. (2)

J. S. McLellan, P. M. Prieto, S. Marcos, S. A. Burns, "Effects of interactions among wave aberrations on optical image quality," Vision Res. 46, 3009-3016 (2006).
[CrossRef] [PubMed]

E. J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P. M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, and W. Drexler, "Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator," Vision Res. 45, 3432-3444 (2005).
[CrossRef] [PubMed]

Other (1)

J. W. Goodman, Introduction to Fourier optics, 3rd Edition, (Roberts and Company, Publishers, Englewood, CO, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Average intensity recorded for a series of flat images with different gray level displayed by the LCOS phase modulator, in pure intensity modulation mode. The gray level-to-phase gain is 0.0259±0.0003 rad/gray level. A 2π phase is achieved with an 8-bit gray level of 242.5±2.5. Readout light wavelength: λ=488 nm.

Fig. 2.
Fig. 2.

Experimental set-up. The LCOS phase modulator was used to degrade the images of the USAF test recorded by the CCD camera. A telescope formed by lenses L2 and L3 conjugated the plane of the liquid crystal to the exit pupil of the imaging system. An interference filter (IF) centered at 488 nm was inserted in front of the optical fiber in order to illuminate the test with monochromatic light. A polarizer (P) with the transmission axis aligned with the liquid crystal molecule orientation was required for phase modulation.

Fig. 3.
Fig. 3.

Schematics of the procedure for obtaining experimental and digital images. The latter are generated by convolution of the calculated point spread function with the object. Experimental images are obtained with the optical system, degrading the wavefront with the LCOS phase modulator through the induction of aberrations.

Fig. 4.
Fig. 4.

Evolution of the two-dimensional correlation coefficient as a function of the amplitude of several Zernike coefficients. Red color indicates the function obtained from the set of digital images whilst blue corresponds to the experimental ones.

Fig. 5.
Fig. 5.

Effect of introducing different values of pure defocus, Zernike Z(2,0), over the image in the experimental and the digital case.

Fig. 6.
Fig. 6.

Ranges of accurate aberration generation as a function of the Zernike polynomial, calculated as the coefficient values that produce a 1.5% difference between the experimental and digital correlation. Each value can be understood as the maximum amount of a given polynomial that can be induced by the LCOS phase modulator with no artifacts over the resulting degraded image. Error bars correspond to the coefficient values that produce a correlation difference between 1% and 2%.

Metrics