Abstract

Stable and self-starting mode-locking of a Tm:KLu(WO4)2 crystal laser is demonstrated using a transmission-type single-walled carbon nanotube (SWCNT) based saturable absorber (SA). These experiments in the 2 µm regime utilize the E11 transition of the SWCNTs for nonlinear saturable absorption. The recovery time of the SWCNT-SA is measured by pump-probe measurements as ~1.2 ps. The mode-locked laser delivers ~10-ps pulses near 1.95 µm with a maximum output power of up to 240 mW at 126 MHz repetition rate.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Targ, B. C. Steakley, J. G. Hawley, L. L. Ames, P. Forney, D. Swanson, R. Stone, R. G. Otto, V. Zarifis, P. Brockman, R. S. Calloway, S. H. Klein, and P. Robinson, "Coherent lidar airbone wind sensor II: Flight-Test results at 2 and 10 μm," Appl. Opt. 35, 7117-7127 (1996).
    [CrossRef] [PubMed]
  2. D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, "CW high-power IR-laser at 2 μm for minimally invasive surgery," Proc. SPIE. 5142, 96-100 (2003).
    [CrossRef]
  3. V. Petrov, F. Güell, J. Massons, J. Gavaldà, R. M. Sole, M. Aguiló, F. Díaz, and U. Griebner, "Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature," IEEE J. Quantum Electron. 40, 1244-1251 (2004).
    [CrossRef]
  4. L. E. Batay, A. N. Kuzmin, A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, A. N. Titov, V. V. Badikov, S. G. Sheina, V. L. Panyutin, M. Mond, and S. Kück, "Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2," Appl. Phys. Lett. 81, 2926-2928 (2002).
    [CrossRef]
  5. F. Heine, E. Heumann, G. Huber, and K. L. Schepler, "Mode-locking of room-temperature cw thulium and holmium lasers," Appl. Phys. Lett. 60, 1161-1162 (1992).
  6. J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, "Continuous-wave mode-locked 2-µm Tm:YAG laser," Opt. Lett. 17, 731-732 (1992).
    [CrossRef] [PubMed]
  7. L. E. Nelson, E. P. Ippen, and H. A. Haus, "Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser," Appl. Phys. Lett. 67, 19-21 (1995).
    [CrossRef]
  8. M. Engelbrecht, F. Haxsen, A. Ruehl, D. Wandt, and D. Kracht, "Ultrafast thulium-doped fiber-oscillator with a pulse energy of 4.3 nJ," Opt. Lett. 33, 690-692 (2008).
    [CrossRef] [PubMed]
  9. R. C. Sharp, D. E. Spock, N. Pan, and J. Elliot, "190-fs passively mode-locked thulium fiber laser with a low threshold," Opt. Lett. 21, 881-883 (1996).
    [CrossRef] [PubMed]
  10. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, and E. M. Dianov, "Mode-locked 1.93 µm thulium fiber laser with a carbon nanotube absorber," Opt. Lett. 33, 1336-1338 (2008).
    [CrossRef] [PubMed]
  11. K. Kieu and F. Wise, "Soliton thulium-doped fiber laser with carbon nanotube saturable absorber," IEEE Photon. Technol. Lett. 21, 128-130 (2009).
    [CrossRef]
  12. S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, "Semiconductor carbon nanotubes as ultrafast switching materials for optical communications," Adv. Mater. 15, 534-537 (2003).
    [CrossRef]
  13. H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, "Role of implantation induced defects on the response time of semiconductor saturable absorbers," Appl. Phys. Lett. 75, 1437-1439 (1999).
    [CrossRef]
  14. T. R. Schibli, K. Minoshima, H. Kataura, E. Itoga, N. Minami, S. Kazaoui, K. Miyashita, M. Tokumoto, and Y. Sakakibara, "Ultrashort pulse-generation by saturable mirrors based on polymer embedded carbon nanotubes," Opt. Express 13, 8025-8031 (2005).
    [CrossRef] [PubMed]
  15. W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, "Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber," Opt. Lett. 33, 2449-2451 (2008).
    [CrossRef] [PubMed]
  16. A. Schmidt, S. Rivier, G. Steinmeyer, V. Petrov, U. Griebner, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, M. Aguiló, and F. Díaz, "Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber," Opt. Lett. 33, 729-731 (2008).
    [CrossRef] [PubMed]
  17. J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, "Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 µm," Appl. Phys. Lett. 93, 161106 (2008).
    [CrossRef]
  18. X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
    [CrossRef]
  19. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46-56 (1999).
    [CrossRef]

2009

K. Kieu and F. Wise, "Soliton thulium-doped fiber laser with carbon nanotube saturable absorber," IEEE Photon. Technol. Lett. 21, 128-130 (2009).
[CrossRef]

2008

2006

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

2005

2004

V. Petrov, F. Güell, J. Massons, J. Gavaldà, R. M. Sole, M. Aguiló, F. Díaz, and U. Griebner, "Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature," IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

2003

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, "CW high-power IR-laser at 2 μm for minimally invasive surgery," Proc. SPIE. 5142, 96-100 (2003).
[CrossRef]

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, "Semiconductor carbon nanotubes as ultrafast switching materials for optical communications," Adv. Mater. 15, 534-537 (2003).
[CrossRef]

2002

L. E. Batay, A. N. Kuzmin, A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, A. N. Titov, V. V. Badikov, S. G. Sheina, V. L. Panyutin, M. Mond, and S. Kück, "Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2," Appl. Phys. Lett. 81, 2926-2928 (2002).
[CrossRef]

1999

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, "Role of implantation induced defects on the response time of semiconductor saturable absorbers," Appl. Phys. Lett. 75, 1437-1439 (1999).
[CrossRef]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46-56 (1999).
[CrossRef]

1996

1995

L. E. Nelson, E. P. Ippen, and H. A. Haus, "Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser," Appl. Phys. Lett. 67, 19-21 (1995).
[CrossRef]

1992

F. Heine, E. Heumann, G. Huber, and K. L. Schepler, "Mode-locking of room-temperature cw thulium and holmium lasers," Appl. Phys. Lett. 60, 1161-1162 (1992).

J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, "Continuous-wave mode-locked 2-µm Tm:YAG laser," Opt. Lett. 17, 731-732 (1992).
[CrossRef] [PubMed]

Aguiló, M.

A. Schmidt, S. Rivier, G. Steinmeyer, V. Petrov, U. Griebner, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, M. Aguiló, and F. Díaz, "Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber," Opt. Lett. 33, 729-731 (2008).
[CrossRef] [PubMed]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

V. Petrov, F. Güell, J. Massons, J. Gavaldà, R. M. Sole, M. Aguiló, F. Díaz, and U. Griebner, "Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature," IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

Ahn, Y. H.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, "Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 µm," Appl. Phys. Lett. 93, 161106 (2008).
[CrossRef]

Ames, L. L.

Badikov, V. V.

L. E. Batay, A. N. Kuzmin, A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, A. N. Titov, V. V. Badikov, S. G. Sheina, V. L. Panyutin, M. Mond, and S. Kück, "Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2," Appl. Phys. Lett. 81, 2926-2928 (2002).
[CrossRef]

Batay, L. E.

L. E. Batay, A. N. Kuzmin, A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, A. N. Titov, V. V. Badikov, S. G. Sheina, V. L. Panyutin, M. Mond, and S. Kück, "Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2," Appl. Phys. Lett. 81, 2926-2928 (2002).
[CrossRef]

Bernd, H. W.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, "CW high-power IR-laser at 2 μm for minimally invasive surgery," Proc. SPIE. 5142, 96-100 (2003).
[CrossRef]

Brinkmann, R.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, "CW high-power IR-laser at 2 μm for minimally invasive surgery," Proc. SPIE. 5142, 96-100 (2003).
[CrossRef]

Brockman, P.

Calloway, R. S.

Chernov, A. I.

Cho, W. B.

Choi, S. Y.

Cockayne, D. J. H.

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, "Role of implantation induced defects on the response time of semiconductor saturable absorbers," Appl. Phys. Lett. 75, 1437-1439 (1999).
[CrossRef]

Danicke, V.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, "CW high-power IR-laser at 2 μm for minimally invasive surgery," Proc. SPIE. 5142, 96-100 (2003).
[CrossRef]

Demidovich, A. A.

L. E. Batay, A. N. Kuzmin, A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, A. N. Titov, V. V. Badikov, S. G. Sheina, V. L. Panyutin, M. Mond, and S. Kück, "Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2," Appl. Phys. Lett. 81, 2926-2928 (2002).
[CrossRef]

Dianov, E. M.

Díaz, F.

A. Schmidt, S. Rivier, G. Steinmeyer, V. Petrov, U. Griebner, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, M. Aguiló, and F. Díaz, "Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber," Opt. Lett. 33, 729-731 (2008).
[CrossRef] [PubMed]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

V. Petrov, F. Güell, J. Massons, J. Gavaldà, R. M. Sole, M. Aguiló, F. Díaz, and U. Griebner, "Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature," IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

Elliot, J.

Engelbrecht, M.

Esterowitz, L.

Forney, P.

Furuki, M.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, "Semiconductor carbon nanotubes as ultrafast switching materials for optical communications," Adv. Mater. 15, 534-537 (2003).
[CrossRef]

Galan, M.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

Gavaldà, J.

V. Petrov, F. Güell, J. Massons, J. Gavaldà, R. M. Sole, M. Aguiló, F. Díaz, and U. Griebner, "Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature," IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

Grabtchikov, A. S.

L. E. Batay, A. N. Kuzmin, A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, A. N. Titov, V. V. Badikov, S. G. Sheina, V. L. Panyutin, M. Mond, and S. Kück, "Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2," Appl. Phys. Lett. 81, 2926-2928 (2002).
[CrossRef]

Griebner, U.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, "Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 µm," Appl. Phys. Lett. 93, 161106 (2008).
[CrossRef]

A. Schmidt, S. Rivier, G. Steinmeyer, V. Petrov, U. Griebner, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, M. Aguiló, and F. Díaz, "Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber," Opt. Lett. 33, 729-731 (2008).
[CrossRef] [PubMed]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, "Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber," Opt. Lett. 33, 2449-2451 (2008).
[CrossRef] [PubMed]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

V. Petrov, F. Güell, J. Massons, J. Gavaldà, R. M. Sole, M. Aguiló, F. Díaz, and U. Griebner, "Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature," IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

Güell, F.

V. Petrov, F. Güell, J. Massons, J. Gavaldà, R. M. Sole, M. Aguiló, F. Díaz, and U. Griebner, "Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature," IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

Haiml, M.

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, "Role of implantation induced defects on the response time of semiconductor saturable absorbers," Appl. Phys. Lett. 75, 1437-1439 (1999).
[CrossRef]

Haus, H. A.

L. E. Nelson, E. P. Ippen, and H. A. Haus, "Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser," Appl. Phys. Lett. 67, 19-21 (1995).
[CrossRef]

Hawley, J. G.

Haxsen, F.

Heine, F.

F. Heine, E. Heumann, G. Huber, and K. L. Schepler, "Mode-locking of room-temperature cw thulium and holmium lasers," Appl. Phys. Lett. 60, 1161-1162 (1992).

Heumann, E.

F. Heine, E. Heumann, G. Huber, and K. L. Schepler, "Mode-locking of room-temperature cw thulium and holmium lasers," Appl. Phys. Lett. 60, 1161-1162 (1992).

Hönninger, C.

Huber, G.

F. Heine, E. Heumann, G. Huber, and K. L. Schepler, "Mode-locking of room-temperature cw thulium and holmium lasers," Appl. Phys. Lett. 60, 1161-1162 (1992).

Ippen, E. P.

L. E. Nelson, E. P. Ippen, and H. A. Haus, "Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser," Appl. Phys. Lett. 67, 19-21 (1995).
[CrossRef]

Itoga, E.

Iwasa, I.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, "Semiconductor carbon nanotubes as ultrafast switching materials for optical communications," Adv. Mater. 15, 534-537 (2003).
[CrossRef]

Jagadish, C.

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, "Role of implantation induced defects on the response time of semiconductor saturable absorbers," Appl. Phys. Lett. 75, 1437-1439 (1999).
[CrossRef]

Kataura, H.

Kazaoui, S.

Keller, R.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, "CW high-power IR-laser at 2 μm for minimally invasive surgery," Proc. SPIE. 5142, 96-100 (2003).
[CrossRef]

Keller, U.

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, "Role of implantation induced defects on the response time of semiconductor saturable absorbers," Appl. Phys. Lett. 75, 1437-1439 (1999).
[CrossRef]

C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuous-wave passive mode locking," J. Opt. Soc. Am. B 16, 46-56 (1999).
[CrossRef]

Kieu, K.

K. Kieu and F. Wise, "Soliton thulium-doped fiber laser with carbon nanotube saturable absorber," IEEE Photon. Technol. Lett. 21, 128-130 (2009).
[CrossRef]

Kim, K.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, "Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 µm," Appl. Phys. Lett. 93, 161106 (2008).
[CrossRef]

Klein, S. H.

Konov, V. I.

Kracht, D.

Kück, S.

L. E. Batay, A. N. Kuzmin, A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, A. N. Titov, V. V. Badikov, S. G. Sheina, V. L. Panyutin, M. Mond, and S. Kück, "Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2," Appl. Phys. Lett. 81, 2926-2928 (2002).
[CrossRef]

Kuzmin, A. N.

L. E. Batay, A. N. Kuzmin, A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, A. N. Titov, V. V. Badikov, S. G. Sheina, V. L. Panyutin, M. Mond, and S. Kück, "Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2," Appl. Phys. Lett. 81, 2926-2928 (2002).
[CrossRef]

Lederer, M. J.

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, "Role of implantation induced defects on the response time of semiconductor saturable absorbers," Appl. Phys. Lett. 75, 1437-1439 (1999).
[CrossRef]

Lee, S.

Lim, H.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, "Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 µm," Appl. Phys. Lett. 93, 161106 (2008).
[CrossRef]

Lisinetskii, V. A.

L. E. Batay, A. N. Kuzmin, A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, A. N. Titov, V. V. Badikov, S. G. Sheina, V. L. Panyutin, M. Mond, and S. Kück, "Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2," Appl. Phys. Lett. 81, 2926-2928 (2002).
[CrossRef]

Liu, J.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

Lobach, A. S.

Luther-Davies, B.

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, "Role of implantation induced defects on the response time of semiconductor saturable absorbers," Appl. Phys. Lett. 75, 1437-1439 (1999).
[CrossRef]

Massons, J.

V. Petrov, F. Güell, J. Massons, J. Gavaldà, R. M. Sole, M. Aguiló, F. Díaz, and U. Griebner, "Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature," IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

Mateos, X.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

Minami, N.

Minoshima, K.

Mitsu, H.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, "Semiconductor carbon nanotubes as ultrafast switching materials for optical communications," Adv. Mater. 15, 534-537 (2003).
[CrossRef]

Miyashita, K.

Mond, M.

L. E. Batay, A. N. Kuzmin, A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, A. N. Titov, V. V. Badikov, S. G. Sheina, V. L. Panyutin, M. Mond, and S. Kück, "Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2," Appl. Phys. Lett. 81, 2926-2928 (2002).
[CrossRef]

Morier-Genoud, F.

Moser, M.

Nelson, L. E.

L. E. Nelson, E. P. Ippen, and H. A. Haus, "Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser," Appl. Phys. Lett. 67, 19-21 (1995).
[CrossRef]

Obraztsova, E. D.

Orlovich, V. A.

L. E. Batay, A. N. Kuzmin, A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, A. N. Titov, V. V. Badikov, S. G. Sheina, V. L. Panyutin, M. Mond, and S. Kück, "Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2," Appl. Phys. Lett. 81, 2926-2928 (2002).
[CrossRef]

Ott, V.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, "CW high-power IR-laser at 2 μm for minimally invasive surgery," Proc. SPIE. 5142, 96-100 (2003).
[CrossRef]

Otto, R. G.

Pan, N.

Panyutin, V. L.

L. E. Batay, A. N. Kuzmin, A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, A. N. Titov, V. V. Badikov, S. G. Sheina, V. L. Panyutin, M. Mond, and S. Kück, "Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2," Appl. Phys. Lett. 81, 2926-2928 (2002).
[CrossRef]

Paschotta, R.

Petrov, V.

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, "Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 µm," Appl. Phys. Lett. 93, 161106 (2008).
[CrossRef]

A. Schmidt, S. Rivier, G. Steinmeyer, V. Petrov, U. Griebner, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, M. Aguiló, and F. Díaz, "Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber," Opt. Lett. 33, 729-731 (2008).
[CrossRef] [PubMed]

W. B. Cho, J. H. Yim, S. Y. Choi, S. Lee, U. Griebner, V. Petrov, and F. Rotermund, "Mode-locked self-starting Cr:forsterite laser using a single-walled carbon nanotube saturable absorber," Opt. Lett. 33, 2449-2451 (2008).
[CrossRef] [PubMed]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

V. Petrov, F. Güell, J. Massons, J. Gavaldà, R. M. Sole, M. Aguiló, F. Díaz, and U. Griebner, "Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature," IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

Pinto, J. F.

Pujol, M. C.

A. Schmidt, S. Rivier, G. Steinmeyer, V. Petrov, U. Griebner, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, M. Aguiló, and F. Díaz, "Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber," Opt. Lett. 33, 729-731 (2008).
[CrossRef] [PubMed]

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

Rivier, S.

Robinson, P.

Rosenblatt, G. H.

Rotermund, F.

Ruehl, A.

Sakakibara, Y.

Sato, Y.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, "Semiconductor carbon nanotubes as ultrafast switching materials for optical communications," Adv. Mater. 15, 534-537 (2003).
[CrossRef]

Schepler, K. L.

F. Heine, E. Heumann, G. Huber, and K. L. Schepler, "Mode-locking of room-temperature cw thulium and holmium lasers," Appl. Phys. Lett. 60, 1161-1162 (1992).

Schibli, T. R.

Schmidt, A.

Sharp, R. C.

Sheina, S. G.

L. E. Batay, A. N. Kuzmin, A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, A. N. Titov, V. V. Badikov, S. G. Sheina, V. L. Panyutin, M. Mond, and S. Kück, "Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2," Appl. Phys. Lett. 81, 2926-2928 (2002).
[CrossRef]

Siegner, U.

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, "Role of implantation induced defects on the response time of semiconductor saturable absorbers," Appl. Phys. Lett. 75, 1437-1439 (1999).
[CrossRef]

Sole, R. M.

V. Petrov, F. Güell, J. Massons, J. Gavaldà, R. M. Sole, M. Aguiló, F. Díaz, and U. Griebner, "Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature," IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

Solodyankin, M. A.

Spock, D. E.

Steakley, B. C.

Steinmeyer, G.

A. Schmidt, S. Rivier, G. Steinmeyer, V. Petrov, U. Griebner, J. H. Yim, W. B. Cho, S. Lee, F. Rotermund, M. C. Pujol, M. Aguiló, and F. Díaz, "Passive mode locking of Yb:KLuW using a single-walled carbon nanotube saturable absorber," Opt. Lett. 33, 729-731 (2008).
[CrossRef] [PubMed]

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, "Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 µm," Appl. Phys. Lett. 93, 161106 (2008).
[CrossRef]

Stone, R.

Swanson, D.

Tan, H. H.

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, "Role of implantation induced defects on the response time of semiconductor saturable absorbers," Appl. Phys. Lett. 75, 1437-1439 (1999).
[CrossRef]

Targ, R.

Tatsuura, S.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, "Semiconductor carbon nanotubes as ultrafast switching materials for optical communications," Adv. Mater. 15, 534-537 (2003).
[CrossRef]

Tausenev, A. V.

Theisen, D.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, "CW high-power IR-laser at 2 μm for minimally invasive surgery," Proc. SPIE. 5142, 96-100 (2003).
[CrossRef]

Tian, M.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, "Semiconductor carbon nanotubes as ultrafast switching materials for optical communications," Adv. Mater. 15, 534-537 (2003).
[CrossRef]

Titov, A. N.

L. E. Batay, A. N. Kuzmin, A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, A. N. Titov, V. V. Badikov, S. G. Sheina, V. L. Panyutin, M. Mond, and S. Kück, "Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2," Appl. Phys. Lett. 81, 2926-2928 (2002).
[CrossRef]

Tokumoto, M.

Viera, G.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

Wandt, D.

Wise, F.

K. Kieu and F. Wise, "Soliton thulium-doped fiber laser with carbon nanotube saturable absorber," IEEE Photon. Technol. Lett. 21, 128-130 (2009).
[CrossRef]

Yim, J. H.

Zarifis, V.

Zou, J.

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, "Role of implantation induced defects on the response time of semiconductor saturable absorbers," Appl. Phys. Lett. 75, 1437-1439 (1999).
[CrossRef]

Adv. Mater.

S. Tatsuura, M. Furuki, Y. Sato, I. Iwasa, M. Tian, and H. Mitsu, "Semiconductor carbon nanotubes as ultrafast switching materials for optical communications," Adv. Mater. 15, 534-537 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

L. E. Batay, A. N. Kuzmin, A. S. Grabtchikov, V. A. Lisinetskii, V. A. Orlovich, A. A. Demidovich, A. N. Titov, V. V. Badikov, S. G. Sheina, V. L. Panyutin, M. Mond, and S. Kück, "Efficient diode-pumped passively Q-switched laser operation around 1.9 μm and self-frequency Raman conversion of Tm-doped KY(WO4)2," Appl. Phys. Lett. 81, 2926-2928 (2002).
[CrossRef]

F. Heine, E. Heumann, G. Huber, and K. L. Schepler, "Mode-locking of room-temperature cw thulium and holmium lasers," Appl. Phys. Lett. 60, 1161-1162 (1992).

L. E. Nelson, E. P. Ippen, and H. A. Haus, "Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser," Appl. Phys. Lett. 67, 19-21 (1995).
[CrossRef]

H. H. Tan, C. Jagadish, M. J. Lederer, B. Luther-Davies, J. Zou, D. J. H. Cockayne, M. Haiml, U. Siegner, and U. Keller, "Role of implantation induced defects on the response time of semiconductor saturable absorbers," Appl. Phys. Lett. 75, 1437-1439 (1999).
[CrossRef]

J. H. Yim, W. B. Cho, S. Lee, Y. H. Ahn, K. Kim, H. Lim, G. Steinmeyer, V. Petrov, U. Griebner, and F. Rotermund, "Fabrication and characterization of ultrafast carbon nanotube saturable absorbers for solid-state laser mode-locking near 1 µm," Appl. Phys. Lett. 93, 161106 (2008).
[CrossRef]

IEEE J. Quantum Electron.

X. Mateos, V. Petrov, J. Liu, M. C. Pujol, U. Griebner, M. Aguiló, F. Díaz, M. Galan, and G. Viera, "Efficient 2-µm continuous-wave laser oscillation of Tm3+:KLu(WO4)2," IEEE J. Quantum Electron. 42, 1008-1015 (2006).
[CrossRef]

V. Petrov, F. Güell, J. Massons, J. Gavaldà, R. M. Sole, M. Aguiló, F. Díaz, and U. Griebner, "Efficient tunable laser operation of Tm:KGd(WO4)2 in the continuous-wave regime at room temperature," IEEE J. Quantum Electron. 40, 1244-1251 (2004).
[CrossRef]

IEEE Photon. Technol. Lett.

K. Kieu and F. Wise, "Soliton thulium-doped fiber laser with carbon nanotube saturable absorber," IEEE Photon. Technol. Lett. 21, 128-130 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Proc. SPIE.

D. Theisen, V. Ott, H. W. Bernd, V. Danicke, R. Keller, and R. Brinkmann, "CW high-power IR-laser at 2 μm for minimally invasive surgery," Proc. SPIE. 5142, 96-100 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Transmission spectrum of the transmission-type single-walled carbon nanotube saturable absorber (SWCNT-SA). Measurement has been corrected for Fresnel losses.

Fig. 2.
Fig. 2.

Nonlinear response of the transmission-type SWCNT-SA at 1.92 µm. The solid curve shows a biexponential fit to the data.

Fig. 3.
Fig. 3.

SWCNT-SA Q-switched Tm:KLuW laser: steady-state operation.

Fig. 4.
Fig. 4.

SWCNT-SA mode-locked Tm:KLuW laser: (a) autocorrelation trace and (b) spectrum.

Fig. 5.
Fig. 5.

RF spectrum of the mode-locked Tm:KLuW laser without indications of Q-switching: (a) First beat note at 126.03 MHz. (b) Wide-span RF spectrum.

Fig. 6.
Fig. 6.

Mode-locked Tm:KLuW laser: average output power versus incident pump power, measured with 1.5% output coupler transmission.

Metrics