Abstract

Generating precise optical frequencies with a functional power is necessary in many fields of science and technology. Here we demonstrate an all-fiber-based apparatus built to generate near-infrared frequencies directly from an Er-doped fiber femtosecond laser. In our apparatus, only a single resonance mode is extracted at a time on demand via a composite fiber filter comprised of a Fabry-Perot etalon with a Bragg grating. The extracted mode having weak 40 nW power is amplified to 20 mW by means of optical injection locking to a distributed-feedback laser diode under phase-stabilization control. The amplified final output signal yields a frequency stability of 2 parts in 1015 at 10 s averaging with a narrow linewidth of less than 1 Hz. This apparatus is precise and immune to environmental disturbance, thereby being well suited to on-site near-infrared applications of frequency calibration, spectroscopy, and optical clocks.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288(5466), 635-639 (2000).
    [CrossRef]
  2. Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 85(6877), 233-237 (2002).
    [CrossRef]
  3. J. D. Jost, J. L. Hall, and J. Ye, "Continuous tunable, precise, single frequency optical signal generator," Opt. Express 10, 512-520 (2002).
  4. T. R. Schibli, K. Minoshima, E. L. Hong, H. Inaba, Y. Bitou, A. Onae, and H. Matsumoto, "Phase-locked widely tunable optical single-frequency generator based on a femtosecond comb," Opt. Lett. 30(17), 2323-2325 (2005).
    [CrossRef]
  5. J. Jin, Y.-J. Kim, Y. Kim, S.-W. Kim, and C.-S. Kang, "Absolute length calibration of gauge blocks using optical comb of a femtosecond pulse laser," Opt. Express 14(13), 5968-5974 (2006).
    [CrossRef]
  6. S. E. Park, E. B. Kim, Y.-H. Park, D. S. Yee, T. Y. Kwon, C. Y. Park, H. S. Moon, and T. H. Yoon, "Sweep optical frequency synthesizer with a distributed-Bragg-reflector laser injection locked by a single component of an optical frequency comb," Opt. Lett. 31(24), 3594-3596 (2006).
    [CrossRef]
  7. Y.-J. Kim, J. Jin, Y. Kim, S. Hyun, and S.-W. Kim, "A wide-range optical frequency generator based on the frequency comb of a femtosecond laser," Opt. Express 16(1), 258-264 (2008).
    [CrossRef]
  8. H. Y. Ryu, S. H. Lee, W. K. Lee, H. S. Moon, and H. S. Suh, "Absolute frequency measurement of an acetylene stabilized laser using a selected single mode from a femtosecond fiber laser comb," Opt. Express 16(5), 2867-2873 (2008).
    [CrossRef]
  9. R. Lang, "Injection locking properties of a semiconductor laser," IEEE J. Quantum Electron. QE-18(6), 976-983 (1982).
    [CrossRef]
  10. F. Mogensen, H. Olesen, and G. Jacobsen, "Locking conditions and stability properties for a semiconductor laser with external light injection," IEEE J. Quantum Electron. 7(21), 784-793 (1985).
    [CrossRef]
  11. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, "Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared," Opt. Lett. 29(3), 250-252 (2004).
    [CrossRef]
  12. T. R. Schibli, K. Minoshima, F. L. Hong, H. Inaba, A. Onae, H. Matsumoto, I. Hartl, and M. E. Fermann, "Frequency metrology with a turnkey all-fiber system," Opt. Lett. 29(21), 2467-2469 (2004).
    [CrossRef]
  13. S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, "Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasera, and a unitraveling-carrier photodiode," J. Lightwave Technol. 21(12), 3043-3051 (2003).
    [CrossRef]
  14. C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, "Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop," IEEE Photon. Technol. Lett. 16(3), 903-905 (2004).
    [CrossRef]
  15. A. E. Siegmann, Lasers (Univ. Science Books, Mill Valley, 1986), Chap. 29.
  16. G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "C. "Frequency modulation spectroscopy," Appl. Phys. B 32(3), 145-152 (1983).
    [CrossRef]

2008 (2)

2006 (2)

2005 (1)

2004 (3)

2003 (1)

2002 (2)

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 85(6877), 233-237 (2002).
[CrossRef]

J. D. Jost, J. L. Hall, and J. Ye, "Continuous tunable, precise, single frequency optical signal generator," Opt. Express 10, 512-520 (2002).

2000 (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288(5466), 635-639 (2000).
[CrossRef]

1985 (1)

F. Mogensen, H. Olesen, and G. Jacobsen, "Locking conditions and stability properties for a semiconductor laser with external light injection," IEEE J. Quantum Electron. 7(21), 784-793 (1985).
[CrossRef]

1983 (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "C. "Frequency modulation spectroscopy," Appl. Phys. B 32(3), 145-152 (1983).
[CrossRef]

1982 (1)

R. Lang, "Injection locking properties of a semiconductor laser," IEEE J. Quantum Electron. QE-18(6), 976-983 (1982).
[CrossRef]

Bayvel, P.

C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, "Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop," IEEE Photon. Technol. Lett. 16(3), 903-905 (2004).
[CrossRef]

Bitou, Y.

Bjorklund, G. C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "C. "Frequency modulation spectroscopy," Appl. Phys. B 32(3), 145-152 (1983).
[CrossRef]

Cundiff, S. T.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288(5466), 635-639 (2000).
[CrossRef]

Diddams, S. A.

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, and C. G. Jørgensen, "Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared," Opt. Lett. 29(3), 250-252 (2004).
[CrossRef]

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288(5466), 635-639 (2000).
[CrossRef]

Duser, M.

C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, "Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop," IEEE Photon. Technol. Lett. 16(3), 903-905 (2004).
[CrossRef]

Fermann, M. E.

Fukushima, S.

Hall, J. L.

J. D. Jost, J. L. Hall, and J. Ye, "Continuous tunable, precise, single frequency optical signal generator," Opt. Express 10, 512-520 (2002).

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288(5466), 635-639 (2000).
[CrossRef]

Hänsch, T. W.

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 85(6877), 233-237 (2002).
[CrossRef]

Hartl, I.

Holzwarth, R.

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 85(6877), 233-237 (2002).
[CrossRef]

Hong, E. L.

Hong, F. L.

Hyun, S.

Inaba, H.

Jacobsen, G.

F. Mogensen, H. Olesen, and G. Jacobsen, "Locking conditions and stability properties for a semiconductor laser with external light injection," IEEE J. Quantum Electron. 7(21), 784-793 (1985).
[CrossRef]

Jin, J.

Jones, D. J.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288(5466), 635-639 (2000).
[CrossRef]

Jørgensen, C. G.

Jost, J. D.

J. D. Jost, J. L. Hall, and J. Ye, "Continuous tunable, precise, single frequency optical signal generator," Opt. Express 10, 512-520 (2002).

Kang, C.-S.

Kim, E. B.

Kim, S.-W.

Kim, Y.

Kim, Y.-J.

Kwon, T. Y.

Lang, R.

R. Lang, "Injection locking properties of a semiconductor laser," IEEE J. Quantum Electron. QE-18(6), 976-983 (1982).
[CrossRef]

Lee, S. H.

Lee, W. K.

Lenth, W.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "C. "Frequency modulation spectroscopy," Appl. Phys. B 32(3), 145-152 (1983).
[CrossRef]

Levenson, M. D.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "C. "Frequency modulation spectroscopy," Appl. Phys. B 32(3), 145-152 (1983).
[CrossRef]

Lovell, T.

C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, "Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop," IEEE Photon. Technol. Lett. 16(3), 903-905 (2004).
[CrossRef]

Matsumoto, H.

Minoshima, K.

Mogensen, F.

F. Mogensen, H. Olesen, and G. Jacobsen, "Locking conditions and stability properties for a semiconductor laser with external light injection," IEEE J. Quantum Electron. 7(21), 784-793 (1985).
[CrossRef]

Moon, H. S.

Muramoto, Y.

Newbury, N. R.

Nicholson, J. W.

Olesen, H.

F. Mogensen, H. Olesen, and G. Jacobsen, "Locking conditions and stability properties for a semiconductor laser with external light injection," IEEE J. Quantum Electron. 7(21), 784-793 (1985).
[CrossRef]

Onae, A.

Ortiz, C.

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "C. "Frequency modulation spectroscopy," Appl. Phys. B 32(3), 145-152 (1983).
[CrossRef]

Park, C. Y.

Park, S. E.

Park, Y.-H.

Puttnam, B.

C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, "Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop," IEEE Photon. Technol. Lett. 16(3), 903-905 (2004).
[CrossRef]

Ranka, J. K.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288(5466), 635-639 (2000).
[CrossRef]

Renaud, C. C.

C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, "Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop," IEEE Photon. Technol. Lett. 16(3), 903-905 (2004).
[CrossRef]

Ryu, H. Y.

Schibli, T. R.

Seeds, A. J.

C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, "Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop," IEEE Photon. Technol. Lett. 16(3), 903-905 (2004).
[CrossRef]

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, "Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasera, and a unitraveling-carrier photodiode," J. Lightwave Technol. 21(12), 3043-3051 (2003).
[CrossRef]

Silva, C. F. C.

C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, "Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop," IEEE Photon. Technol. Lett. 16(3), 903-905 (2004).
[CrossRef]

S. Fukushima, C. F. C. Silva, Y. Muramoto, and A. J. Seeds, "Optoelectronic millimeter-wave synthesis using an optical frequency comb generator, optically injection locked lasera, and a unitraveling-carrier photodiode," J. Lightwave Technol. 21(12), 3043-3051 (2003).
[CrossRef]

Stentz, A.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288(5466), 635-639 (2000).
[CrossRef]

Suh, H. S.

Udem, Th.

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 85(6877), 233-237 (2002).
[CrossRef]

Washburn, B. R.

Windeler, R. S.

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288(5466), 635-639 (2000).
[CrossRef]

Yan, M. F.

Ye, J.

J. D. Jost, J. L. Hall, and J. Ye, "Continuous tunable, precise, single frequency optical signal generator," Opt. Express 10, 512-520 (2002).

Yee, D. S.

Yoon, T. H.

Appl. Phys. B (1)

G. C. Bjorklund, M. D. Levenson, W. Lenth, and C. Ortiz, "C. "Frequency modulation spectroscopy," Appl. Phys. B 32(3), 145-152 (1983).
[CrossRef]

IEEE J. Quantum Electron. (2)

R. Lang, "Injection locking properties of a semiconductor laser," IEEE J. Quantum Electron. QE-18(6), 976-983 (1982).
[CrossRef]

F. Mogensen, H. Olesen, and G. Jacobsen, "Locking conditions and stability properties for a semiconductor laser with external light injection," IEEE J. Quantum Electron. 7(21), 784-793 (1985).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

C. C. Renaud, M. Duser, C. F. C. Silva, B. Puttnam, T. Lovell, P. Bayvel, and A. J. Seeds, "Nanosecond channel-switching exact optical frequency synthesizer using an optical injection phase-locked loop," IEEE Photon. Technol. Lett. 16(3), 903-905 (2004).
[CrossRef]

J. Lightwave Technol. (1)

Nature (1)

Th. Udem, R. Holzwarth, and T. W. Hänsch, "Optical frequency metrology," Nature 85(6877), 233-237 (2002).
[CrossRef]

Opt. Express (4)

Opt. Lett. (4)

Science (1)

D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. T. Cundiff, "Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis," Science 288(5466), 635-639 (2000).
[CrossRef]

Other (1)

A. E. Siegmann, Lasers (Univ. Science Books, Mill Valley, 1986), Chap. 29.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Apparatus designed for optical frequency generation. (a), System block diagram (optical signals in red and electric signals in blue). (b), Mode extraction through two sequential filtering steps prior to final optical injection locking. Each of the encircled numbers, ①–④, indicates the location of the corresponding frequency spectrum. FBG: fiber Bragg grating, f: frequency, f0 : carrier-offset frequency, fr : repetition rate, PC: polarization controller, PD: photodetector, SFPF: scanning Fabry-Perot filter.

Fig. 2.
Fig. 2.

Stabilization control of optical injection locking. (a) Tuning of the diode locking range to three injected modes. The central mode is the main frequency signal to be amplified and other two side modes are also injected to obtain the phase control signal. (b) Block diagram for phase stabilization control. (c) Phase delay of the injected signal after optical injection locking. (d) Intensity variation of beat signals. (e) Phase control signal induced by current modulation. Δf: locking offset, fLR : diode locking range, fPM : phase modulation frequency, fr : repetition rate, IPM : modulation current, Ifeedback : feedback current, LPF: low-pass filter, PD: photodetector, PID: proportional-integral-derivative.

Fig. 3.
Fig. 3.

Verification of optical injection locking by monitoring the output signal emitted from the laser diode using an rf spectrum analyzer. When optical injection locking occurs, the output signal is dominated by the amplified central mode to produce only a single beat fr with the original frequency comb. Otherwise, the free-running emission from the laser diode makes another beat fbeat , which drifts with temperature change (inset). fr : repetition rate of the frequency comb.

Fig. 4.
Fig. 4.

Linewidth measurement of the generated frequency output signal using a high resolution rf spectrum analyzer of 1 Hz resolution bandwidth (RBW). The output signal was interfered with a partial comb containing the original frequency mode of the output signal. The partial comb was frequency-shifted using an acousto-optic modulator by an amount of 41.00160 MHz to observe the linewidth profile in the rf domain. The full-width-at-half-maximum (FWHM) was measured to be less than 1 Hz.

Fig. 5.
Fig. 5.

Stability test result of the generated output signal. (a) Time trace of frequency fluctuation at a sampling rate of 0.5 s over a period of 24 hours. (b) Allan deviations of frequency instability with varying average time.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

φ (Δf) = sin1 ( 2 Δ f fLR )
E=exp (i2πft) · [exp(iφ(Δf))+αexp(i2πfrt+iφ(Δf+fr))+αexp(i2πfrt+iφ(Δffr))]
I=E2=E E* =
dc terms +2 α Re {R(Δf,fr)} cos (2πfrt)+2αIm{R(Δf,fr)}sin(2πfrt)+4πfrtterms
V=2 α Im {R(Δf,fr)} 2 α [φ(Δffr)φ(Δf+fr)]
F=VΔf=2α[1(fLB2)2(Δffr)21(fLR2)2(Δf+fr)2]
F4αΔf·fr(fLR2)3.

Metrics