Abstract

Midinfrared absorption can be locally measured using a detection combining an atomic force microscope and a pulsed excitation. This is illustrated for the midinfrared bulk GaAs phonon absorption and for the midinfrared absorption of thin SiO2 microdisks. We show that the signal given by the cantilever oscillation amplitude of the atomic force microscope follows the spectral dependence of the bulk material absorption. The absorption spatial resolution achieved with microdisks is around 50 nanometer for an optical excitation around 22 micrometer wavelength.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999). URL http://dx.doi.org/10.1038/20154.
  2. M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared Spectroscopic Mapping of Single Nanoparticles and Viruses at Nanoscale Resolution," Nano. Lett. 6, 1307-1310 (2006).
    [PubMed]
  3. S. C. Kehr, M. Cebula, O. Mieth, T. Hartling, J. Seidel, S. Grafstrom, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, "Anisotropy Contrast in Phonon-Enhanced Apertureless Near-Field Microscopy Using a Free-Electron Laser," Phys. Rev. Lett. 100, 256403 (2008). URL http://link.aps.org/abstract/PRL/v100/e256403.
    [PubMed]
  4. A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, "Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor," Opt. Lett. 30, 2388-2390 (2005). URL http://ol.osa.org/abstract.cfm?URI=ol-30-18-2388.
    [PubMed]
  5. C. Mayet, A. Dazzi, R. Prazeres, F. Allot, F. Glotin, and J. M. Ortega, "Sub-100 nm IR spectromicroscopy of living cells," Opt. Lett. 33, 1611-1613 (2008). URL http://ol.osa.org/abstract.cfm?URI=ol-33-14-1611.
    [PubMed]
  6. J. Houel, S. Sauvage, P. Boucaud, A. Dazzi, R. Prazeres, F. Glotin, J.-M. Ortega, A. Miard, and A. Lemaitre, "Ultraweak-Absorption Microscopy of a Single Semiconductor Quantum Dot in the Midinfrared Range," Phys. Rev. Lett. 99, 217404 (2007).
  7. C. W. de Silva, ed., Vibration and Shock Handbook, (CRC Press Taylor and Francis, 2005) Vol. 26 .
  8. J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123- R181 (1982).
  9. S. Volz, Microscale and nanoscale heat transfer, Topics in Applied Physics (Springer, 2007).
  10. Y. Zhao, C. Zhu, S. Wang, J. Z. Tian, D. J. Yang, C. K. Chen, H. Cheng, and P. Hing, "Pulsed photothermal reflectance measurement of the thermal conductivity of sputtered aluminum nitride thin films," J. Appl. Phys. 96, 4563-4568 (2004). URL http://link.aip.org/link/?JAP/96/4563/1.
  11. A. Dazzi, in Biomedical vibrational spectroscopy, (Wiley, 2008) Chap. 13 .
  12. H. R. Philipp, "The infrared optical properties of SiO[sub 2] and SiO[sub 2] layers on silicon," J. Appl. Phys. 50, 1053-1057 (1979). URL http://link.aip.org/link/?JAP/50/1053/1.
  13. A. G. Bell, "On the production and the reproduction of sound by light," Am. J Sci. 20, 305 (1880).
  14. J. Lee and W. P. King, "Microcantilever actuation via periodic internal heating," Rev. Sci. Instrum. 78, 126102 (2007).
  15. A. Rosencwaig and A. Gersho, "Theory of the photoacoustic effect with solids," J. Appl. Phys. 47, 64 (1976).

2007 (1)

J. Lee and W. P. King, "Microcantilever actuation via periodic internal heating," Rev. Sci. Instrum. 78, 126102 (2007).

2006 (1)

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared Spectroscopic Mapping of Single Nanoparticles and Viruses at Nanoscale Resolution," Nano. Lett. 6, 1307-1310 (2006).
[PubMed]

1976 (1)

A. Rosencwaig and A. Gersho, "Theory of the photoacoustic effect with solids," J. Appl. Phys. 47, 64 (1976).

1880 (1)

A. G. Bell, "On the production and the reproduction of sound by light," Am. J Sci. 20, 305 (1880).

Bell, A. G.

A. G. Bell, "On the production and the reproduction of sound by light," Am. J Sci. 20, 305 (1880).

Brehm, M.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared Spectroscopic Mapping of Single Nanoparticles and Viruses at Nanoscale Resolution," Nano. Lett. 6, 1307-1310 (2006).
[PubMed]

Gersho, A.

A. Rosencwaig and A. Gersho, "Theory of the photoacoustic effect with solids," J. Appl. Phys. 47, 64 (1976).

Hillenbrand, R.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared Spectroscopic Mapping of Single Nanoparticles and Viruses at Nanoscale Resolution," Nano. Lett. 6, 1307-1310 (2006).
[PubMed]

Keilmann, F.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared Spectroscopic Mapping of Single Nanoparticles and Viruses at Nanoscale Resolution," Nano. Lett. 6, 1307-1310 (2006).
[PubMed]

King, W. P.

J. Lee and W. P. King, "Microcantilever actuation via periodic internal heating," Rev. Sci. Instrum. 78, 126102 (2007).

Lee, J.

J. Lee and W. P. King, "Microcantilever actuation via periodic internal heating," Rev. Sci. Instrum. 78, 126102 (2007).

Rosencwaig, A.

A. Rosencwaig and A. Gersho, "Theory of the photoacoustic effect with solids," J. Appl. Phys. 47, 64 (1976).

Taubner, T.

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared Spectroscopic Mapping of Single Nanoparticles and Viruses at Nanoscale Resolution," Nano. Lett. 6, 1307-1310 (2006).
[PubMed]

Am. J. Sci. (1)

A. G. Bell, "On the production and the reproduction of sound by light," Am. J Sci. 20, 305 (1880).

J. Appl. Phys. (1)

A. Rosencwaig and A. Gersho, "Theory of the photoacoustic effect with solids," J. Appl. Phys. 47, 64 (1976).

Nano. Lett. (1)

M. Brehm, T. Taubner, R. Hillenbrand, and F. Keilmann, "Infrared Spectroscopic Mapping of Single Nanoparticles and Viruses at Nanoscale Resolution," Nano. Lett. 6, 1307-1310 (2006).
[PubMed]

Rev. Sci. Instrum. (1)

J. Lee and W. P. King, "Microcantilever actuation via periodic internal heating," Rev. Sci. Instrum. 78, 126102 (2007).

Other (11)

B. Knoll and F. Keilmann, "Near-field probing of vibrational absorption for chemical microscopy," Nature 399, 134-137 (1999). URL http://dx.doi.org/10.1038/20154.

S. C. Kehr, M. Cebula, O. Mieth, T. Hartling, J. Seidel, S. Grafstrom, L. M. Eng, S. Winnerl, D. Stehr, and M. Helm, "Anisotropy Contrast in Phonon-Enhanced Apertureless Near-Field Microscopy Using a Free-Electron Laser," Phys. Rev. Lett. 100, 256403 (2008). URL http://link.aps.org/abstract/PRL/v100/e256403.
[PubMed]

A. Dazzi, R. Prazeres, F. Glotin, and J. M. Ortega, "Local infrared microspectroscopy with subwavelength spatial resolution with an atomic force microscope tip used as a photothermal sensor," Opt. Lett. 30, 2388-2390 (2005). URL http://ol.osa.org/abstract.cfm?URI=ol-30-18-2388.
[PubMed]

C. Mayet, A. Dazzi, R. Prazeres, F. Allot, F. Glotin, and J. M. Ortega, "Sub-100 nm IR spectromicroscopy of living cells," Opt. Lett. 33, 1611-1613 (2008). URL http://ol.osa.org/abstract.cfm?URI=ol-33-14-1611.
[PubMed]

J. Houel, S. Sauvage, P. Boucaud, A. Dazzi, R. Prazeres, F. Glotin, J.-M. Ortega, A. Miard, and A. Lemaitre, "Ultraweak-Absorption Microscopy of a Single Semiconductor Quantum Dot in the Midinfrared Range," Phys. Rev. Lett. 99, 217404 (2007).

C. W. de Silva, ed., Vibration and Shock Handbook, (CRC Press Taylor and Francis, 2005) Vol. 26 .

J. S. Blakemore, "Semiconducting and other major properties of gallium arsenide," J. Appl. Phys. 53, R123- R181 (1982).

S. Volz, Microscale and nanoscale heat transfer, Topics in Applied Physics (Springer, 2007).

Y. Zhao, C. Zhu, S. Wang, J. Z. Tian, D. J. Yang, C. K. Chen, H. Cheng, and P. Hing, "Pulsed photothermal reflectance measurement of the thermal conductivity of sputtered aluminum nitride thin films," J. Appl. Phys. 96, 4563-4568 (2004). URL http://link.aip.org/link/?JAP/96/4563/1.

A. Dazzi, in Biomedical vibrational spectroscopy, (Wiley, 2008) Chap. 13 .

H. R. Philipp, "The infrared optical properties of SiO[sub 2] and SiO[sub 2] layers on silicon," J. Appl. Phys. 50, 1053-1057 (1979). URL http://link.aip.org/link/?JAP/50/1053/1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic view of the experimental setup for the local measurement of the absorption as described in the text.

Fig. 2
Fig. 2

Top: transmission of a 72 μm thick GaAs bulk substrate. Bottom: integrated oscillation amplitude the atomic force microscope cantilever in contact mode on the surface of the bulk GaAs substrate. The squares in the inset depict the oscillation amplitude as a function of the absorption (arbitrary units) deduced from the smoothed transmission in the 44–68 meV grayed energy range. The dotted line in the inset is a guide to the eye.

Fig. 3
Fig. 3

Two-dimensional imaging of a 100 nm thick, 700 nm in diameter, SiO2 microdisk deposited on a silicon substrate. (a) Topography signal of the microdisk measured simultaneously with the signal in (b). The size of a pixel is 50 nm. (b) Frequency integrated amplitude of cantilever oscillation signal depicted as a gray level. The laser wavelength is 21.8 μm. (c) Signal extracted from the scan line highlithed in (b) and (d) by a blue rectangle at 57 meV and 78.5 meV respectively. At 78.5 meV the signal values (in arbitrary units) have been multiplied by a constant factor (0.825) to ease comparison. (d) Frequency integrated amplitude of cantilever oscillation signal at a laser wavelength of 15.8 μm, out of resonance of the SiO2 microdisk absorption.

Fig. 4
Fig. 4

Top: Transmission of a 200 nm thick SiO2 film measured by standard Fourier transform spectroscopy. The SiO2 is deposited on a silicon substrate and the transmission has been normalized by the transmission of the silicon substrate. The Si absorption bands around 70 meV are therefore not observed in this normalized transmission. Note that the thickness of the layer is twice as large as the 100 nm thickness of the microdisk. Bottom: Spectral dependence of the integrated cantilever oscillation amplitude on top of the SiO2 microdisk.

Metrics