Abstract

A two-stage fiber-based femtosecond amplification system is presented, based on chirped-pulse amplification in highly nonlinear regime. The amount of self-phase modulation is separately adjusted in each stage selecting the proper stretching ratio in order to compensate gain narrowing. Analytical design rules are validated using numerical simulations. Our experimental implementation leads to the generation of high temporal quality 20 µJ 202 fs pulses at repetition rate of 200 kHz, a record duration at this energy level.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Kuznetsova and F. W. Wise, "Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification," Opt. Lett. 32, 2671-2673 (2007).
    [CrossRef] [PubMed]
  2. Y. Zaouter, J. Boullet, E. Mottay, and E. Cormier, "Transform-limited 100 µJ, 340 MW pulses from a nonlinear-fiber chirped-pulse amplifier using a mismatched grating stretcher-compressor," Opt. Lett. 33, 1527-1529 (2008).
    [CrossRef] [PubMed]
  3. F. Röser, T. Eidam, J. Rothhardt, O. Schimdt, D. N. Schimpf, J. Limpert, and A. Tünnermann, "Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 3495-3497 (2007).
    [CrossRef] [PubMed]
  4. S. Hädrich, J. Rothhardt, T. Eidam, J. Limpert, and A. Tünnermann, "High energy ultrashort pulses via hollow fiber compression of a fiber chirped pulse amplification system," Opt. Express 17, 3913-3922 (2009).
    [CrossRef] [PubMed]
  5. T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, "Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber," Opt. Lett. 28, 1951-1953 (2003).
    [CrossRef] [PubMed]
  6. S. Hädrich, J. Rothhardt, F. Röser, T. Gottschall, J. Limpert, and A. Tünnermann, "Degenerate optical parametric amplifier delivering sub 30 fs pulses with 2GW peak power," Opt. Express 16, 19812-19820 (2008).
    [CrossRef] [PubMed]
  7. Y. Zaouter, D. Papadopoulos, M. Hanna, J. Boullet, L. Huang, C. Aguergaray, F. Druon, E. Mottay, P. Georges, and E. Cormier, "Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers," Opt. Lett. 33, 107-109 (2008).
    [CrossRef] [PubMed]
  8. Q1. D. Papadopoulos, M. Hanna, F. Druon, and P. Georges, "Compensation of gain narrowing by self-phase modulation in high-energy ultrafast chirped-pulse amplifiers," J. Sel. Top. Quantum Electron 15, 182-186 (2009).
    [CrossRef]
  9. A. Galvanauskas, "Ultrashort-pulse fiber amplifiers," in "Ultrafast lasers" CRC, p. 209 (2002).
  10. D. Papadopoulos, F. Druon, J. Boudeile, I. Martial, M. Hanna, P. Georges, P.-O. Petit, P. Goldner, and B. Viana, "Low-repetition-rate femtosecond operation in extended-cavity mode-locked Yb:CALGO laser," Opt. Lett. 34, 196-198 (2009).
    [CrossRef] [PubMed]
  11. D. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, "The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems" Opt. Express 16, 10664-10674 (2008).
    [CrossRef] [PubMed]

2009

2008

2007

2003

Aguergaray, C.

Baggett, J. C.

Boudeile, J.

Boullet, J.

Brunner, F.

Cormier, E.

Druon, F.

Eidam, T.

Furusawa, K.

Georges, P.

Goldner, P.

Gottschall, T.

Hädrich, S.

Hanna, M.

Huang, L.

Innerhofer, E.

Keller, U.

Kuznetsova, L.

Limpert, J.

Martial, I.

Monro, T. M.

Mottay, E.

Papadopoulos, D.

Paschotta, R.

Petit, P.-O.

Richardson, D. J.

Röser, F.

Rothhardt, J.

Schimdt, O.

Schimpf, D.

Schimpf, D. N.

Seise, E.

Südmeyer, T.

Tünnermann, A.

Viana, B.

Wise, F. W.

Zaouter, Y.

J. Sel. Top. Quantum Electron

Q1. D. Papadopoulos, M. Hanna, F. Druon, and P. Georges, "Compensation of gain narrowing by self-phase modulation in high-energy ultrafast chirped-pulse amplifiers," J. Sel. Top. Quantum Electron 15, 182-186 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

D. Papadopoulos, F. Druon, J. Boudeile, I. Martial, M. Hanna, P. Georges, P.-O. Petit, P. Goldner, and B. Viana, "Low-repetition-rate femtosecond operation in extended-cavity mode-locked Yb:CALGO laser," Opt. Lett. 34, 196-198 (2009).
[CrossRef] [PubMed]

T. Südmeyer, F. Brunner, E. Innerhofer, R. Paschotta, K. Furusawa, J. C. Baggett, T. M. Monro, D. J. Richardson, and U. Keller, "Nonlinear femtosecond pulse compression at high average power levels by use of a large-mode-area holey fiber," Opt. Lett. 28, 1951-1953 (2003).
[CrossRef] [PubMed]

L. Kuznetsova and F. W. Wise, "Scaling of femtosecond Yb-doped fiber amplifiers to tens of microjoule pulse energy via nonlinear chirped pulse amplification," Opt. Lett. 32, 2671-2673 (2007).
[CrossRef] [PubMed]

F. Röser, T. Eidam, J. Rothhardt, O. Schimdt, D. N. Schimpf, J. Limpert, and A. Tünnermann, "Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system," Opt. Lett. 32, 3495-3497 (2007).
[CrossRef] [PubMed]

Y. Zaouter, D. Papadopoulos, M. Hanna, J. Boullet, L. Huang, C. Aguergaray, F. Druon, E. Mottay, P. Georges, and E. Cormier, "Stretcher-free high energy nonlinear amplification of femtosecond pulses in rod-type fibers," Opt. Lett. 33, 107-109 (2008).
[CrossRef] [PubMed]

Y. Zaouter, J. Boullet, E. Mottay, and E. Cormier, "Transform-limited 100 µJ, 340 MW pulses from a nonlinear-fiber chirped-pulse amplifier using a mismatched grating stretcher-compressor," Opt. Lett. 33, 1527-1529 (2008).
[CrossRef] [PubMed]

Other

A. Galvanauskas, "Ultrashort-pulse fiber amplifiers," in "Ultrafast lasers" CRC, p. 209 (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Accumulated nonlinear phase in each stage and overall as a function of gain in the first amplifier stage, for a fixed overall gain of 47 dB. The black line represents the experimental operation point.

Fig. 2.
Fig. 2.

Numerical simulations of the two-stage amplification. Top: temporal profiles, input (blue) output (red), Fourier-transform-limited ouput (grey). Bottom: spectra: input (blue), intermediate (green), output (red).

Fig. 3.
Fig. 3.

Experimental setup.

Fig. 4.
Fig. 4.

Left: Simulation (black) and experimental (red) between the amplifier stages. Middle: Simulation (black) and experimental (red) at the output of the system. Right: Simulation (black) and experimental (red) output temporal pulse intensity retrieved by FROG (FROG error is 46×10−4 on a 256×256 grid).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δt=2λEinexp(g0z)g0(ΔωinΔωout),
Δωout=Δωin2ΔΩGN2Δωin2+ΔΩGN2 ,

Metrics