Abstract

Almost chirp-free pulses with a duration of 190 fs were achieved from a mode-locked semiconductor disk laser (SDL) emitting at ≈1045 nm. Pulse shaping was different from the soliton-like mode-locking process known from lasers using dielectric gain media; passive amplitude modulation provided by a fast saturable absorber was essential. The spectrum of the absorber had to be matched to the gain spectrum within a few nm. A tapered diode amplifier was demonstrated to be a device for both picking and amplifying SDL pulses. The pulse repetition rate of the SDL output was reduced from 3 GHz to 47 MHz.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
    [CrossRef]
  2. K. J. Linden, “Single Mode, Short Cavity, Pb-Salt Diode Lasers Operating in the 5, 10, and 30 μm Spectral Regions,” IEEE J. Quantum Electron. 21(4), 391–394 (1985).
    [CrossRef]
  3. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and Characteristics of High-Power (>0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE J. Sel. Top. Quantum Electron. 5(3), 561–573 (1999).
    [CrossRef]
  4. J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, R. Scheps, and H. J. Hoffman, eds., Proc. SPIE 5332, 143–150 (2004).
  5. B. Rudin, A. Rutz, M. Hoffmann, D. J. H. C. Maas, A.-R. Bellancourt, E. Gini, T. Südmeyer, and U. Keller, “Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode,” Opt. Lett. 33(22), 2719–2721 (2008).
    [CrossRef] [PubMed]
  6. S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Häring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
    [CrossRef]
  7. U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
    [CrossRef]
  8. P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006).
    [CrossRef] [PubMed]
  9. R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulseshaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75, 445–451 (2002).
    [CrossRef]
  10. A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
    [CrossRef]
  11. S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz Train of Sub-500-fs Optical Soliton-Like Pulses From a Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 17(2), 267–269 (2005).
    [CrossRef]
  12. P. Klopp, F. Saas, M. Zorn, M. Weyers, and U. Griebner, “290-fs pulses from a semiconductor disk laser,” Opt. Express 16(8), 5770–5775 (2008).
    [CrossRef] [PubMed]
  13. K. G. Wilcox, Z. Mihoubi, G. J. Daniell, S. Elsmere, A. Quarterman, I. Farrer, D. A. Ritchie, and A. Tropper, “Ultrafast optical Stark mode-locked semiconductor laser,” Opt. Lett. 33(23), 2797–2799 (2008).
    [CrossRef] [PubMed]
  14. M. Zorn, P. Klopp, F. Saas, A. Ginolas, O. Krüger, U. Griebner, and M. Weyers, “Semiconductor components for femtosecond semiconductor disk lasers grown by MOVPE,” J. Cryst. Growth 310(23), 5187–5190 (2008).
    [CrossRef]
  15. U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, and M. Weyers, “X-ray diffraction spot mapping – a tool to study structural properties of semiconductor disk laser devices,” Phys. Status Solidi A 204(8), 2753–2759 (2007).
    [CrossRef]
  16. F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
    [CrossRef]
  17. F. Saas, Erzeugung ultrakurzer Lichtimpulse mit einem Halbleiterscheibenlaser (Shaker Verlag, 2008).
  18. P. Klopp, F. Saas, U. Griebner M. Zorn, and M. Weyers, “Passively Mode-Locked Semiconductor Disk Laser Generating Sub-300-fs Pulses,” CLEO/QELS 2008, CThF6.
  19. E. J. Saarinen, R. Herda, and O. G. Okhotnikov, “Dynamics of pulse formation in mode-locked semiconductor disk lasers,” J. Opt. Soc. Am. B 24(11), 2784–2790 (2007).
    [CrossRef]
  20. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, San Diego, CA, 2007).
  21. R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001).
    [CrossRef]
  22. D. S. Chemla, W. H. Knox, D. A. B. Miller, S. Schmitt-Rink, J. B. Stark, and R. Zimmermann, “The excitonic optical Stark effect in semiconductor quantum wells probed with femtosecond optical pulses,” J. Lumin. 44(4-6), 233–246 (1989).
    [CrossRef]
  23. E. Schöll, K. Ketterer, E. H. Böttcher, and D. Bimberg, “Gain-Switched Semiconductor Laser Amplifier as an Ultrafast Dynamical Optical Gate,” Appl. Phys. B 46, 69–77 (1988).
    [CrossRef]

2008

2007

U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, and M. Weyers, “X-ray diffraction spot mapping – a tool to study structural properties of semiconductor disk laser devices,” Phys. Status Solidi A 204(8), 2753–2759 (2007).
[CrossRef]

E. J. Saarinen, R. Herda, and O. G. Okhotnikov, “Dynamics of pulse formation in mode-locked semiconductor disk lasers,” J. Opt. Soc. Am. B 24(11), 2784–2790 (2007).
[CrossRef]

2006

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[CrossRef]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[CrossRef]

P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006).
[CrossRef] [PubMed]

2005

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz Train of Sub-500-fs Optical Soliton-Like Pulses From a Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 17(2), 267–269 (2005).
[CrossRef]

2002

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulseshaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75, 445–451 (2002).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
[CrossRef]

2001

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001).
[CrossRef]

2000

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Häring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

1999

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and Characteristics of High-Power (>0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE J. Sel. Top. Quantum Electron. 5(3), 561–573 (1999).
[CrossRef]

1989

D. S. Chemla, W. H. Knox, D. A. B. Miller, S. Schmitt-Rink, J. B. Stark, and R. Zimmermann, “The excitonic optical Stark effect in semiconductor quantum wells probed with femtosecond optical pulses,” J. Lumin. 44(4-6), 233–246 (1989).
[CrossRef]

1988

E. Schöll, K. Ketterer, E. H. Böttcher, and D. Bimberg, “Gain-Switched Semiconductor Laser Amplifier as an Ultrafast Dynamical Optical Gate,” Appl. Phys. B 46, 69–77 (1988).
[CrossRef]

1985

K. J. Linden, “Single Mode, Short Cavity, Pb-Salt Diode Lasers Operating in the 5, 10, and 30 μm Spectral Regions,” IEEE J. Quantum Electron. 21(4), 391–394 (1985).
[CrossRef]

Bellancourt, A.-R.

Bimberg, D.

E. Schöll, K. Ketterer, E. H. Böttcher, and D. Bimberg, “Gain-Switched Semiconductor Laser Amplifier as an Ultrafast Dynamical Optical Gate,” Appl. Phys. B 46, 69–77 (1988).
[CrossRef]

Böttcher, E. H.

E. Schöll, K. Ketterer, E. H. Böttcher, and D. Bimberg, “Gain-Switched Semiconductor Laser Amplifier as an Ultrafast Dynamical Optical Gate,” Appl. Phys. B 46, 69–77 (1988).
[CrossRef]

Chemla, D. S.

D. S. Chemla, W. H. Knox, D. A. B. Miller, S. Schmitt-Rink, J. B. Stark, and R. Zimmermann, “The excitonic optical Stark effect in semiconductor quantum wells probed with femtosecond optical pulses,” J. Lumin. 44(4-6), 233–246 (1989).
[CrossRef]

Daniell, G. J.

Dhanjal, S.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Häring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

Döring, S.

U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, and M. Weyers, “X-ray diffraction spot mapping – a tool to study structural properties of semiconductor disk laser devices,” Phys. Status Solidi A 204(8), 2753–2759 (2007).
[CrossRef]

Dupriez, P.

Elsmere, S.

Farrer, I.

Finot, C.

Foreman, H. D.

Garnache, A.

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz Train of Sub-500-fs Optical Soliton-Like Pulses From a Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 17(2), 267–269 (2005).
[CrossRef]

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulseshaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75, 445–451 (2002).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
[CrossRef]

Gini, E.

Ginolas, A.

M. Zorn, P. Klopp, F. Saas, A. Ginolas, O. Krüger, U. Griebner, and M. Weyers, “Semiconductor components for femtosecond semiconductor disk lasers grown by MOVPE,” J. Cryst. Growth 310(23), 5187–5190 (2008).
[CrossRef]

Grenzer, J.

U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, and M. Weyers, “X-ray diffraction spot mapping – a tool to study structural properties of semiconductor disk laser devices,” Phys. Status Solidi A 204(8), 2753–2759 (2007).
[CrossRef]

Griebner, U.

M. Zorn, P. Klopp, F. Saas, A. Ginolas, O. Krüger, U. Griebner, and M. Weyers, “Semiconductor components for femtosecond semiconductor disk lasers grown by MOVPE,” J. Cryst. Growth 310(23), 5187–5190 (2008).
[CrossRef]

P. Klopp, F. Saas, M. Zorn, M. Weyers, and U. Griebner, “290-fs pulses from a semiconductor disk laser,” Opt. Express 16(8), 5770–5775 (2008).
[CrossRef] [PubMed]

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[CrossRef]

Hakimi, F.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and Characteristics of High-Power (>0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE J. Sel. Top. Quantum Electron. 5(3), 561–573 (1999).
[CrossRef]

Häring, R.

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulseshaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75, 445–451 (2002).
[CrossRef]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Häring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

Herda, R.

Hoffmann, M.

Hoogland, S.

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz Train of Sub-500-fs Optical Soliton-Like Pulses From a Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 17(2), 267–269 (2005).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
[CrossRef]

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulseshaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75, 445–451 (2002).
[CrossRef]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Häring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

Kan, H.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[CrossRef]

Keller, U.

B. Rudin, A. Rutz, M. Hoffmann, D. J. H. C. Maas, A.-R. Bellancourt, E. Gini, T. Südmeyer, and U. Keller, “Highly efficient optically pumped vertical-emitting semiconductor laser with more than 20 W average output power in a fundamental transverse mode,” Opt. Lett. 33(22), 2719–2721 (2008).
[CrossRef] [PubMed]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[CrossRef]

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulseshaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75, 445–451 (2002).
[CrossRef]

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001).
[CrossRef]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Häring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

Ketterer, K.

E. Schöll, K. Ketterer, E. H. Böttcher, and D. Bimberg, “Gain-Switched Semiconductor Laser Amplifier as an Ultrafast Dynamical Optical Gate,” Appl. Phys. B 46, 69–77 (1988).
[CrossRef]

Klopp, P.

P. Klopp, F. Saas, M. Zorn, M. Weyers, and U. Griebner, “290-fs pulses from a semiconductor disk laser,” Opt. Express 16(8), 5770–5775 (2008).
[CrossRef] [PubMed]

M. Zorn, P. Klopp, F. Saas, A. Ginolas, O. Krüger, U. Griebner, and M. Weyers, “Semiconductor components for femtosecond semiconductor disk lasers grown by MOVPE,” J. Cryst. Growth 310(23), 5187–5190 (2008).
[CrossRef]

Knox, W. H.

D. S. Chemla, W. H. Knox, D. A. B. Miller, S. Schmitt-Rink, J. B. Stark, and R. Zimmermann, “The excitonic optical Stark effect in semiconductor quantum wells probed with femtosecond optical pulses,” J. Lumin. 44(4-6), 233–246 (1989).
[CrossRef]

Korn, D.

U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, and M. Weyers, “X-ray diffraction spot mapping – a tool to study structural properties of semiconductor disk laser devices,” Phys. Status Solidi A 204(8), 2753–2759 (2007).
[CrossRef]

Krüger, O.

M. Zorn, P. Klopp, F. Saas, A. Ginolas, O. Krüger, U. Griebner, and M. Weyers, “Semiconductor components for femtosecond semiconductor disk lasers grown by MOVPE,” J. Cryst. Growth 310(23), 5187–5190 (2008).
[CrossRef]

Kuwabara, M.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[CrossRef]

Kuznetsov, M.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and Characteristics of High-Power (>0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE J. Sel. Top. Quantum Electron. 5(3), 561–573 (1999).
[CrossRef]

Linden, K. J.

K. J. Linden, “Single Mode, Short Cavity, Pb-Salt Diode Lasers Operating in the 5, 10, and 30 μm Spectral Regions,” IEEE J. Quantum Electron. 21(4), 391–394 (1985).
[CrossRef]

Maas, D. J. H. C.

Malinowski, A.

Mihoubi, Z.

Miller, D. A. B.

D. S. Chemla, W. H. Knox, D. A. B. Miller, S. Schmitt-Rink, J. B. Stark, and R. Zimmermann, “The excitonic optical Stark effect in semiconductor quantum wells probed with femtosecond optical pulses,” J. Lumin. 44(4-6), 233–246 (1989).
[CrossRef]

Mooradian, A.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and Characteristics of High-Power (>0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE J. Sel. Top. Quantum Electron. 5(3), 561–573 (1999).
[CrossRef]

Morier-Genoud, F.

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Häring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

Nilsson, J.

Okhotnikov, O. G.

Paschotta, R.

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulseshaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75, 445–451 (2002).
[CrossRef]

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001).
[CrossRef]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Häring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

Pietsch, U.

U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, and M. Weyers, “X-ray diffraction spot mapping – a tool to study structural properties of semiconductor disk laser devices,” Phys. Status Solidi A 204(8), 2753–2759 (2007).
[CrossRef]

Pittroff, W.

U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, and M. Weyers, “X-ray diffraction spot mapping – a tool to study structural properties of semiconductor disk laser devices,” Phys. Status Solidi A 204(8), 2753–2759 (2007).
[CrossRef]

Quarterman, A.

Richardson, D. J.

Ritchie, D. A.

Roberts, J. S.

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz Train of Sub-500-fs Optical Soliton-Like Pulses From a Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 17(2), 267–269 (2005).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
[CrossRef]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Häring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

Rudin, B.

Rutz, A.

Saarinen, E. J.

Saas, F.

M. Zorn, P. Klopp, F. Saas, A. Ginolas, O. Krüger, U. Griebner, and M. Weyers, “Semiconductor components for femtosecond semiconductor disk lasers grown by MOVPE,” J. Cryst. Growth 310(23), 5187–5190 (2008).
[CrossRef]

P. Klopp, F. Saas, M. Zorn, M. Weyers, and U. Griebner, “290-fs pulses from a semiconductor disk laser,” Opt. Express 16(8), 5770–5775 (2008).
[CrossRef] [PubMed]

U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, and M. Weyers, “X-ray diffraction spot mapping – a tool to study structural properties of semiconductor disk laser devices,” Phys. Status Solidi A 204(8), 2753–2759 (2007).
[CrossRef]

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[CrossRef]

Sagnes, I.

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz Train of Sub-500-fs Optical Soliton-Like Pulses From a Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 17(2), 267–269 (2005).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
[CrossRef]

Sahu, J. K.

Saint-Girons, G.

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
[CrossRef]

Schmitt-Rink, S.

D. S. Chemla, W. H. Knox, D. A. B. Miller, S. Schmitt-Rink, J. B. Stark, and R. Zimmermann, “The excitonic optical Stark effect in semiconductor quantum wells probed with femtosecond optical pulses,” J. Lumin. 44(4-6), 233–246 (1989).
[CrossRef]

Schöll, E.

E. Schöll, K. Ketterer, E. H. Böttcher, and D. Bimberg, “Gain-Switched Semiconductor Laser Amplifier as an Ultrafast Dynamical Optical Gate,” Appl. Phys. B 46, 69–77 (1988).
[CrossRef]

Sprague, R.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and Characteristics of High-Power (>0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE J. Sel. Top. Quantum Electron. 5(3), 561–573 (1999).
[CrossRef]

Stark, J. B.

D. S. Chemla, W. H. Knox, D. A. B. Miller, S. Schmitt-Rink, J. B. Stark, and R. Zimmermann, “The excitonic optical Stark effect in semiconductor quantum wells probed with femtosecond optical pulses,” J. Lumin. 44(4-6), 233–246 (1989).
[CrossRef]

Steinmeyer, G.

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[CrossRef]

Südmeyer, T.

Tropper, A.

Tropper, A. C.

P. Dupriez, C. Finot, A. Malinowski, J. K. Sahu, J. Nilsson, D. J. Richardson, K. G. Wilcox, H. D. Foreman, and A. C. Tropper, “High-power, high repetition rate picosecond and femtosecond sources based on Yb-doped fiber amplification of VECSELs,” Opt. Express 14(21), 9611–9616 (2006).
[CrossRef] [PubMed]

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[CrossRef]

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz Train of Sub-500-fs Optical Soliton-Like Pulses From a Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 17(2), 267–269 (2005).
[CrossRef]

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulseshaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75, 445–451 (2002).
[CrossRef]

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
[CrossRef]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Häring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

Weyers, M.

P. Klopp, F. Saas, M. Zorn, M. Weyers, and U. Griebner, “290-fs pulses from a semiconductor disk laser,” Opt. Express 16(8), 5770–5775 (2008).
[CrossRef] [PubMed]

M. Zorn, P. Klopp, F. Saas, A. Ginolas, O. Krüger, U. Griebner, and M. Weyers, “Semiconductor components for femtosecond semiconductor disk lasers grown by MOVPE,” J. Cryst. Growth 310(23), 5187–5190 (2008).
[CrossRef]

U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, and M. Weyers, “X-ray diffraction spot mapping – a tool to study structural properties of semiconductor disk laser devices,” Phys. Status Solidi A 204(8), 2753–2759 (2007).
[CrossRef]

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[CrossRef]

Wilcox, K. G.

Yamashita, Y.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[CrossRef]

Yoshida, H.

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[CrossRef]

Zeimer, U.

U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, and M. Weyers, “X-ray diffraction spot mapping – a tool to study structural properties of semiconductor disk laser devices,” Phys. Status Solidi A 204(8), 2753–2759 (2007).
[CrossRef]

Zimmermann, R.

D. S. Chemla, W. H. Knox, D. A. B. Miller, S. Schmitt-Rink, J. B. Stark, and R. Zimmermann, “The excitonic optical Stark effect in semiconductor quantum wells probed with femtosecond optical pulses,” J. Lumin. 44(4-6), 233–246 (1989).
[CrossRef]

Zorn, M.

P. Klopp, F. Saas, M. Zorn, M. Weyers, and U. Griebner, “290-fs pulses from a semiconductor disk laser,” Opt. Express 16(8), 5770–5775 (2008).
[CrossRef] [PubMed]

M. Zorn, P. Klopp, F. Saas, A. Ginolas, O. Krüger, U. Griebner, and M. Weyers, “Semiconductor components for femtosecond semiconductor disk lasers grown by MOVPE,” J. Cryst. Growth 310(23), 5187–5190 (2008).
[CrossRef]

U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, and M. Weyers, “X-ray diffraction spot mapping – a tool to study structural properties of semiconductor disk laser devices,” Phys. Status Solidi A 204(8), 2753–2759 (2007).
[CrossRef]

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[CrossRef]

Appl. Phys. B

R. Paschotta, R. Häring, A. Garnache, S. Hoogland, A. C. Tropper, and U. Keller, “Soliton-like pulseshaping mechanism in passively mode-locked surface-emitting semiconductor lasers,” Appl. Phys. B 75, 445–451 (2002).
[CrossRef]

R. Paschotta and U. Keller, “Passive mode locking with slow saturable absorbers,” Appl. Phys. B 73(7), 653–662 (2001).
[CrossRef]

E. Schöll, K. Ketterer, E. H. Böttcher, and D. Bimberg, “Gain-Switched Semiconductor Laser Amplifier as an Ultrafast Dynamical Optical Gate,” Appl. Phys. B 46, 69–77 (1988).
[CrossRef]

Appl. Phys. Lett.

A. Garnache, S. Hoogland, A. C. Tropper, I. Sagnes, G. Saint-Girons, and J. S. Roberts, “Sub-500-fs soliton-like pulse in a passively mode-locked broadband surface-emitting laser with 100 mW average power,” Appl. Phys. Lett. 80(21), 3892–3894 (2002).
[CrossRef]

F. Saas, G. Steinmeyer, U. Griebner, M. Zorn, and M. Weyers, “Exciton resonance tuning for the generation of sub-picosecond pulses from a mode-locked semiconductor disk laser,” Appl. Phys. Lett. 89(14), 141107 (2006).
[CrossRef]

IEEE J. Quantum Electron.

K. J. Linden, “Single Mode, Short Cavity, Pb-Salt Diode Lasers Operating in the 5, 10, and 30 μm Spectral Regions,” IEEE J. Quantum Electron. 21(4), 391–394 (1985).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, “Design and Characteristics of High-Power (>0.5-W CW) Diode-Pumped Vertical-External-Cavity Surface-Emitting Semiconductor Lasers with Circular TEM00 Beams,” IEEE J. Sel. Top. Quantum Electron. 5(3), 561–573 (1999).
[CrossRef]

IEEE Photon. Technol. Lett.

S. Hoogland, A. Garnache, I. Sagnes, J. S. Roberts, and A. C. Tropper, “10-GHz Train of Sub-500-fs Optical Soliton-Like Pulses From a Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 17(2), 267–269 (2005).
[CrossRef]

S. Hoogland, S. Dhanjal, A. C. Tropper, J. S. Roberts, R. Häring, R. Paschotta, F. Morier-Genoud, and U. Keller, “Passively Mode-Locked Diode-Pumped Surface-Emitting Semiconductor Laser,” IEEE Photon. Technol. Lett. 12(9), 1135–1137 (2000).
[CrossRef]

J. Cryst. Growth

M. Zorn, P. Klopp, F. Saas, A. Ginolas, O. Krüger, U. Griebner, and M. Weyers, “Semiconductor components for femtosecond semiconductor disk lasers grown by MOVPE,” J. Cryst. Growth 310(23), 5187–5190 (2008).
[CrossRef]

J. Lumin.

D. S. Chemla, W. H. Knox, D. A. B. Miller, S. Schmitt-Rink, J. B. Stark, and R. Zimmermann, “The excitonic optical Stark effect in semiconductor quantum wells probed with femtosecond optical pulses,” J. Lumin. 44(4-6), 233–246 (1989).
[CrossRef]

J. Opt. Soc. Am. B

Nat. Photonics

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, “A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode,” Nat. Photonics 2(9), 551–554 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rep.

U. Keller and A. C. Tropper, “Passively modelocked surface-emitting semiconductor lasers,” Phys. Rep. 429(2), 67–120 (2006).
[CrossRef]

Phys. Status Solidi A

U. Zeimer, J. Grenzer, D. Korn, S. Döring, M. Zorn, W. Pittroff, U. Pietsch, F. Saas, and M. Weyers, “X-ray diffraction spot mapping – a tool to study structural properties of semiconductor disk laser devices,” Phys. Status Solidi A 204(8), 2753–2759 (2007).
[CrossRef]

Other

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, San Diego, CA, 2007).

F. Saas, Erzeugung ultrakurzer Lichtimpulse mit einem Halbleiterscheibenlaser (Shaker Verlag, 2008).

P. Klopp, F. Saas, U. Griebner M. Zorn, and M. Weyers, “Passively Mode-Locked Semiconductor Disk Laser Generating Sub-300-fs Pulses,” CLEO/QELS 2008, CThF6.

J. L. Chilla, S. D. Butterworth, A. Zeitschel, J. P. Charles, A. L. Caprara, M. K. Reed, and L. Spinelli, “High power optically pumped semiconductor lasers,” in Solid State Lasers XIII: Technology and Devices, R. Scheps, and H. J. Hoffman, eds., Proc. SPIE 5332, 143–150 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Pump-probe measurement of a SESAM with a near-surface quantum well.

Fig. 2
Fig. 2

Semiconductor disk laser (SDL). The V-shaped cavity is 50 mm long. It contains a saturable absorber mirror (SESAM) as the mode-locker, an InGaAs/AlGaAs disk gain element at the folding point, and a curved output coupler with a transmission between 0.2% and 1.5% around 1040 nm. The diode pump light at 840 nm is focused by an f = 63 mm lens.

Fig. 3
Fig. 3

Pulse duration measured for different saturable absorber temperatures.

Fig. 4
Fig. 4

Autocorrelation traces of SDL for different pump powers. Respective powers from 0.77 W to 1.32 W are indicated by arrows. All traces were background-free; offsets were used to arrange all traces in one graph. Traces to the left were observed while the laser was operating in a single-pulse regime, to the right while in double-pulsing regime. Solid curves are fits assuming a sech2 pulse shape.

Fig. 5
Fig. 5

(a) Pulse durations from the SDL at different pump powers. At 1.00 W there was a transition from single-pulse operation (full squares) to double pulsing (half-filled squares). Slightly above 1.24 W, the laser switched back to single-pulse operation, with a much longer pulse duration, however; please note the axis break. (b) Pulse energies.

Fig. 6
Fig. 6

Optical spectra of the SDL emission at different pump powers, recorded simultaneously with the autocorrelation traces shown in Fig. 4. Offsets were used to present all spectra in one graph.

Fig. 7
Fig. 7

Minimum pulse durations obtained for different output coupler transmission.

Fig. 8
Fig. 8

Autocorrelation trace and optical spectrum (inset) of the InGaAs/AlGaAs SDL recorded for the shortest pulse, with a duration τp = 190 fs. The output coupler transmission was 0.75%. τac , autocorrelation width; Δλ, spectral width (FWHM).

Fig. 9
Fig. 9

Unpolarized (“s+p”) and polarized (“s”, “p”) spectra of the 190-fs SDL. The dashed curve is the simulated spectrum of a Fourier-limited 190-fs pulse and indicates the soliton-like part of the signal.

Fig. 10
Fig. 10

Radio frequency spectrum of the 190-fs SDL. a) Wide-range scan (0-7 GHz), b) scan around the first beat node at the round-trip frequency froundtrip = 2.998GHz.

Fig. 11
Fig. 11

Tapered diode amplifier (TDA). (a) Scheme. Pulse picker section: ridge waveguide operated with a pulsed electric current; amplifier section: tapered part operated with cw current. frep , optical-pulse rate of SDL; rep , electrical pulse rate = new optical-pulse rate; 1/2n , pulse picking ratio. (b) TDA (indicated by red circle) on mount.

Fig. 12
Fig. 12

Optical pulse from the SDL after pulse picking and amplification by the TDA. Inset: two pulses on a 50-ns-timescale. The pulse repetition rate was reduced from 3 GHz to 47 MHz.

Tables (1)

Tables Icon

Table 1 Optimum SESAM temperatures for shortest-pulse generation from our SDLs. Three near-surface SESAMs (photoluminescence at 1028 nm, 1031 nm, 1050 nm) and four gain chips (A - D) were used. The output coupler transmission was TOC = 0.5%, except for experiment no. 6, where TOC = 0.75%. Bold numbers: The wavelength of the SESAM exciton transition (error ± 5 nm) is compared to the respective laser emission wavelength.

Metrics