Abstract

Used as a wavefront corrector, a liquid crystal spatial modulator (LC-SLM) has good repeatability and linearity, which are essential for open-loop adaptive optics, and the open-loop optical system can increase the light energy efficiency by a factor of two for the LC-SLM and improve the system bandwidth. In order to test the performance of the LC-SLM in open-loop correction, an indoor closed-loop configuration optical system is constructed on the open-loop control method. With this method, it is demonstrated that the residual error after open-loop correction could be smaller than 0.08λ (RMS: root mean square value) if the initial wavefront aberration is below 2.5λ (RMS), and the repeatability error of open-loop correction is smaller than 0.01λ (RMS).

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. W. Babcock, "The possibility of compensating astronomical seeing," Publ. Astron. Soc. Pac. 65, 229-236 (1953).
    [CrossRef]
  2. J. M. Beckers, "Adaptive optics for astronomy: principles, performance, and applications," Annu. Rev. Astron. Astrophys. 31, 13-62 (1993).
    [CrossRef]
  3. D. T. Gavel, "Adaptive optics control strategies for extremely large telescopes," Proc. SPIE 4494, 215-220 (2002).
    [CrossRef]
  4. J. B. Stewart, A. Dour, Y. Zhou, and T. G. Bifano, "Open-loop control of MEMS deformable mirror for large-amplitude wavefront control," J. Opt. Soc. Am. A 24, 3827-3832 (2007).
    [CrossRef]
  5. C. R. Vogel and Q. Yang, "Modeling, simulation, and open-loop control of a continuous facesheet MEMS deformbale mirror," J. Opt. Soc. Am. A 23, 1074-1082 (2006).
    [CrossRef]
  6. N. Konforti, E. Marom, and S. T. Wu, "Phase-only modulation with twisted nematic liquid crystal spatial light modulation," Opt. Lett. 13, 251-254 (1988).
    [CrossRef] [PubMed]
  7. Y. Liu, Z. Cao, D. Li, Q. Mu, L. Hu, X. Lu, and L. Xuan, "Correction for large aberration with phase-only liquid-crystal wavefront corrector," Opt. Eng. 45, 128001 (2006).
    [CrossRef]
  8. Q. Mu, Z. Cao, L. Hu, D. Li, and L. Xuan, "Adaptive optics imaging system based on a high-resolution liquid crystal on silicon device," Opt. Express 14, 8013-8018 (2006).
    [CrossRef] [PubMed]
  9. S. Serati, X. Xia, O. Mughal, and A. Linnenberger. "High-resolution phase-only spatial light modulators with sub millisecond response," Proc. SPIE 5106, 138-145 (2003).
    [CrossRef]
  10. T. Shirai, "Liquid-crystal adaptive optics based on feedback interferometry for high-resolution retinal imaging," Appl. Opt. 41, 4013-4023 (2002).
    [CrossRef] [PubMed]
  11. J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997).
    [CrossRef]
  12. Q. Mu, Z. Cao, D. Li, L. Hu, and L. Xuan, "Liquid crystal based adaptive optics system to compensate both low and high order aberrations in a model eye," Opt. Express 15, 1946-1953 (2007).
    [CrossRef] [PubMed]
  13. D. Cai, N. Ling, and W. Jiang, "Performance of liquid crystal spatial light modulator as a wave-front corrector for atmospheric turbulence compensation," Proc. SPIE 6457, 227-234 (2007).
  14. Q. Mu, Z. Cao, C. Li, B. Jiang, L. Hu, and L. Xuan, "Accommodation-based liquid crystal adaptive optics system for large ocular aberration correction," Opt. Lett. 33, 2898-2900 (2008).
    [CrossRef] [PubMed]
  15. D. Dayton, J. Gonglewski, S. Restaino, J. Martin, J. Phillips, M. Hartman, P. Kervin, J. Snodgress, S. Browne, N. Heimann, M. Shilko, R. Pohle, B. Carrion, C. Smith, and D. Thiel, "Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites," Opt. Express 10, 1508-1519 (2002).
    [PubMed]
  16. Z. Cao, Q. Mu, L. Hu, D. Li, Z. Peng, Y. Liu, and L. Xuan, "Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope," Opt. Express 17, 2530-2537 (2009).
    [CrossRef] [PubMed]
  17. G. D. Love, "Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator," Appl. Opt. 36, 1517-1524 (1997).
    [CrossRef] [PubMed]

2009 (1)

2008 (1)

2007 (3)

2006 (3)

2003 (1)

S. Serati, X. Xia, O. Mughal, and A. Linnenberger. "High-resolution phase-only spatial light modulators with sub millisecond response," Proc. SPIE 5106, 138-145 (2003).
[CrossRef]

2002 (3)

1997 (2)

G. D. Love, "Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator," Appl. Opt. 36, 1517-1524 (1997).
[CrossRef] [PubMed]

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997).
[CrossRef]

1993 (1)

J. M. Beckers, "Adaptive optics for astronomy: principles, performance, and applications," Annu. Rev. Astron. Astrophys. 31, 13-62 (1993).
[CrossRef]

1988 (1)

1953 (1)

H. W. Babcock, "The possibility of compensating astronomical seeing," Publ. Astron. Soc. Pac. 65, 229-236 (1953).
[CrossRef]

Babcock, H. W.

H. W. Babcock, "The possibility of compensating astronomical seeing," Publ. Astron. Soc. Pac. 65, 229-236 (1953).
[CrossRef]

Beckers, J. M.

J. M. Beckers, "Adaptive optics for astronomy: principles, performance, and applications," Annu. Rev. Astron. Astrophys. 31, 13-62 (1993).
[CrossRef]

Bifano, T. G.

Birch, P. M.

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997).
[CrossRef]

Browne, S.

Cai, D.

D. Cai, N. Ling, and W. Jiang, "Performance of liquid crystal spatial light modulator as a wave-front corrector for atmospheric turbulence compensation," Proc. SPIE 6457, 227-234 (2007).

Cao, Z.

Carrion, B.

Dayton, D.

Dour, A.

Gavel, D. T.

D. T. Gavel, "Adaptive optics control strategies for extremely large telescopes," Proc. SPIE 4494, 215-220 (2002).
[CrossRef]

Gonglewski, J.

Gourlay, J.

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997).
[CrossRef]

Hartman, M.

Heimann, N.

Hu, L.

Jiang, B.

Jiang, W.

D. Cai, N. Ling, and W. Jiang, "Performance of liquid crystal spatial light modulator as a wave-front corrector for atmospheric turbulence compensation," Proc. SPIE 6457, 227-234 (2007).

Kervin, P.

Konforti, N.

Li, C.

Li, D.

Ling, N.

D. Cai, N. Ling, and W. Jiang, "Performance of liquid crystal spatial light modulator as a wave-front corrector for atmospheric turbulence compensation," Proc. SPIE 6457, 227-234 (2007).

Linnenberger, A.

S. Serati, X. Xia, O. Mughal, and A. Linnenberger. "High-resolution phase-only spatial light modulators with sub millisecond response," Proc. SPIE 5106, 138-145 (2003).
[CrossRef]

Liu, Y.

Z. Cao, Q. Mu, L. Hu, D. Li, Z. Peng, Y. Liu, and L. Xuan, "Preliminary use of nematic liquid crystal adaptive optics with a 2.16-meter reflecting telescope," Opt. Express 17, 2530-2537 (2009).
[CrossRef] [PubMed]

Y. Liu, Z. Cao, D. Li, Q. Mu, L. Hu, X. Lu, and L. Xuan, "Correction for large aberration with phase-only liquid-crystal wavefront corrector," Opt. Eng. 45, 128001 (2006).
[CrossRef]

Love, G. D.

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997).
[CrossRef]

G. D. Love, "Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator," Appl. Opt. 36, 1517-1524 (1997).
[CrossRef] [PubMed]

Lu, X.

Y. Liu, Z. Cao, D. Li, Q. Mu, L. Hu, X. Lu, and L. Xuan, "Correction for large aberration with phase-only liquid-crystal wavefront corrector," Opt. Eng. 45, 128001 (2006).
[CrossRef]

Marom, E.

Martin, J.

Mu, Q.

Mughal, O.

S. Serati, X. Xia, O. Mughal, and A. Linnenberger. "High-resolution phase-only spatial light modulators with sub millisecond response," Proc. SPIE 5106, 138-145 (2003).
[CrossRef]

Peng, Z.

Phillips, J.

Pohle, R.

Purvis, A.

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997).
[CrossRef]

Restaino, S.

Serati, S.

S. Serati, X. Xia, O. Mughal, and A. Linnenberger. "High-resolution phase-only spatial light modulators with sub millisecond response," Proc. SPIE 5106, 138-145 (2003).
[CrossRef]

Sharples, R. M.

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997).
[CrossRef]

Shilko, M.

Shirai, T.

Smith, C.

Snodgress, J.

Stewart, J. B.

Thiel, D.

Vogel, C. R.

Wu, S. T.

Xia, X.

S. Serati, X. Xia, O. Mughal, and A. Linnenberger. "High-resolution phase-only spatial light modulators with sub millisecond response," Proc. SPIE 5106, 138-145 (2003).
[CrossRef]

Xuan, L.

Yang, Q.

Zhou, Y.

Annu. Rev. Astron. Astrophys. (1)

J. M. Beckers, "Adaptive optics for astronomy: principles, performance, and applications," Annu. Rev. Astron. Astrophys. 31, 13-62 (1993).
[CrossRef]

Appl. Opt. (2)

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

J. Gourlay, G. D. Love, P. M. Birch, R. M. Sharples, and A. Purvis, "A real time closed loop liquid crystal adaptive optics system: first results," Opt. Commun. 137, 17-21 (1997).
[CrossRef]

Opt. Eng. (1)

Y. Liu, Z. Cao, D. Li, Q. Mu, L. Hu, X. Lu, and L. Xuan, "Correction for large aberration with phase-only liquid-crystal wavefront corrector," Opt. Eng. 45, 128001 (2006).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Proc. SPIE (3)

D. Cai, N. Ling, and W. Jiang, "Performance of liquid crystal spatial light modulator as a wave-front corrector for atmospheric turbulence compensation," Proc. SPIE 6457, 227-234 (2007).

S. Serati, X. Xia, O. Mughal, and A. Linnenberger. "High-resolution phase-only spatial light modulators with sub millisecond response," Proc. SPIE 5106, 138-145 (2003).
[CrossRef]

D. T. Gavel, "Adaptive optics control strategies for extremely large telescopes," Proc. SPIE 4494, 215-220 (2002).
[CrossRef]

Publ. Astron. Soc. Pac. (1)

H. W. Babcock, "The possibility of compensating astronomical seeing," Publ. Astron. Soc. Pac. 65, 229-236 (1953).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Sketch of closed-loop and open-loop adaptive optics systems with LC-SLM.

Fig. 2.
Fig. 2.

Layout of the optical system.

Fig. 3.
Fig. 3.

Wavefront error measured in relative mode for 5 min.

Fig. 4.
Fig. 4.

Wavefront reconstruction test for Z 3=1.

Fig. 5.
Fig. 5.

Zernike coefficient tested by the WFS when the LCOS gray map is Z 2=2, Zn =0; Z 3=-2, Zn =0; and Z 5=1, Zn =0. The reconstruction wavefront error (RMS) is 0.038λ, 0.031λ, and 0.027λ, respectively.

Fig. 6.
Fig. 6.

(a) Linearity and (b) repeatability tests for the LCOS.

Fig. 7.
Fig. 7.

Wavefront map for different aberration lenses inserted. L0 means no lens inserted, L1 means lens 1 inserted, L2 means lens 2 inserted, and so on. L1–L3 are myopia eyepieces and L4 is the astigmatism eyepiece.

Fig. 8.
Fig. 8.

The fiber images before and after wavefront aberration is corrected. The order for the images is the same as in Fig. 7: from left to right L0 (no lens inserted), L1, …, L4 in turn.

Fig. 9.
Fig. 9.

Wavefront RMS during open-loop correction for about six cycles.

Tables (2)

Tables Icon

Table. 1. Detailed parameters for the HASO-32 and BNS LCOS

Tables Icon

Table. 2. Wavefront reconstruction error for Z4–Z24

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Φ L C O S i = Φ L C O S i 1 k Φ W F S i ,

Metrics