Abstract

Spontaneous emission of Eu3+ ions is studied in thin organic films deposited onto several different substrates. It has been demonstrated that the presence of a metallic surface in close vicinity to emitting Eu3+ ions causes modifications of their spontaneous emission spectra, in particular, the change in the relative strengths of magnetic-dipole and electric-dipole transitions. The character and the magnitude of the effect depend on the polarization and the observation angle. The experimental data are discussed in terms of modification of transition probabilities and account for the interference between directly emitted and reflected light waves.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [CrossRef] [PubMed]
  2. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
    [CrossRef]
  3. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [CrossRef] [PubMed]
  4. W. Cai, U. K. Chettiar, A. V. Kildishev, and V. M. Shalaev, “Designs for optical cloaking with high-order transformations,” Opt. Express 16(8), 5444–5452 (2008).
    [CrossRef] [PubMed]
  5. N. Noginova, G. Zhu, M. Mayy, M. A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys. 103, 07E901, (2008).
  6. M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Pergamon Press, 1980).
  7. A. A. Kaminskii, Laser Crystals: Their Physics and. Properties (Springer, 1981).
  8. K. H. Drexhade, “Interaction of light with monomolecular dye layers,” Prog. Opt. 12, 162–231 (1974).
  9. V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
    [CrossRef]
  10. H. F. Arnodus, “Power emitted by a multipole near an interface,” Surf. Sci. 571(1-3), 173–186 (2004).
    [CrossRef]
  11. R. R. Chance, A. H. Miller, A. Frock, and R. Silbey, “Luminescent lifetimes near multiple interfaces. A quantative comparisin of theory and experiment,” Chem. Phys. Lett. 33(3), 590–592 (1975).
    [CrossRef]
  12. A. Reid and M. Piché, “Spontaneous emission in a nonhomogeneous medium: Definition of an effective polarizability,” Phys. Rev. A 46(1), 436–441 (1992).
    [CrossRef] [PubMed]
  13. W. L. Barnes, “Topical Review. Fluorescence near interfaces. The role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
    [CrossRef]
  14. J. Enderlein, “Single-molecule fluorescence near a metal layer,” Chem. Phys. 247(1), 1–9 (1999).
    [CrossRef]
  15. L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006)
  16. J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D Appl. Phys. 36(14), R240–R249 (2003).
    [CrossRef] [PubMed]
  17. L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, Oxford, 1984)
  18. D. W. Lynch, and W. R. Hunter, “Comments on the optical constants of metals and an introduction to data for several metals” in Handbook of Optical Constants of Solids (Academic Press, 1985).

2008

2007

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
[CrossRef]

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

2006

2004

H. F. Arnodus, “Power emitted by a multipole near an interface,” Surf. Sci. 571(1-3), 173–186 (2004).
[CrossRef]

2003

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D Appl. Phys. 36(14), R240–R249 (2003).
[CrossRef] [PubMed]

2000

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

1999

J. Enderlein, “Single-molecule fluorescence near a metal layer,” Chem. Phys. 247(1), 1–9 (1999).
[CrossRef]

1998

W. L. Barnes, “Topical Review. Fluorescence near interfaces. The role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

1992

A. Reid and M. Piché, “Spontaneous emission in a nonhomogeneous medium: Definition of an effective polarizability,” Phys. Rev. A 46(1), 436–441 (1992).
[CrossRef] [PubMed]

1975

R. R. Chance, A. H. Miller, A. Frock, and R. Silbey, “Luminescent lifetimes near multiple interfaces. A quantative comparisin of theory and experiment,” Chem. Phys. Lett. 33(3), 590–592 (1975).
[CrossRef]

Alekseyev, L. V.

Arnodus, H. F.

H. F. Arnodus, “Power emitted by a multipole near an interface,” Surf. Sci. 571(1-3), 173–186 (2004).
[CrossRef]

Barnes, W. L.

W. L. Barnes, “Topical Review. Fluorescence near interfaces. The role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

Cai, W.

Chance, R. R.

R. R. Chance, A. H. Miller, A. Frock, and R. Silbey, “Luminescent lifetimes near multiple interfaces. A quantative comparisin of theory and experiment,” Chem. Phys. Lett. 33(3), 590–592 (1975).
[CrossRef]

Chettiar, U. K.

Enderlein, J.

J. Enderlein, “Single-molecule fluorescence near a metal layer,” Chem. Phys. 247(1), 1–9 (1999).
[CrossRef]

Frock, A.

R. R. Chance, A. H. Miller, A. Frock, and R. Silbey, “Luminescent lifetimes near multiple interfaces. A quantative comparisin of theory and experiment,” Chem. Phys. Lett. 33(3), 590–592 (1975).
[CrossRef]

Geddes, C. D.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D Appl. Phys. 36(14), R240–R249 (2003).
[CrossRef] [PubMed]

Gryczynski, I.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D Appl. Phys. 36(14), R240–R249 (2003).
[CrossRef] [PubMed]

Gryczynski, Z.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D Appl. Phys. 36(14), R240–R249 (2003).
[CrossRef] [PubMed]

Jacob, Z.

Kildishev, A. V.

Kudryashova, V. A.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D Appl. Phys. 36(14), R240–R249 (2003).
[CrossRef] [PubMed]

Legendziewicz, J.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
[CrossRef]

Malicka, J.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D Appl. Phys. 36(14), R240–R249 (2003).
[CrossRef] [PubMed]

Miller, A. H.

R. R. Chance, A. H. Miller, A. Frock, and R. Silbey, “Luminescent lifetimes near multiple interfaces. A quantative comparisin of theory and experiment,” Chem. Phys. Lett. 33(3), 590–592 (1975).
[CrossRef]

Narimanov, E.

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Piché, M.

A. Reid and M. Piché, “Spontaneous emission in a nonhomogeneous medium: Definition of an effective polarizability,” Phys. Rev. A 46(1), 436–441 (1992).
[CrossRef] [PubMed]

Reid, A.

A. Reid and M. Piché, “Spontaneous emission in a nonhomogeneous medium: Definition of an effective polarizability,” Phys. Rev. A 46(1), 436–441 (1992).
[CrossRef] [PubMed]

Shalaev, V. M.

Silbey, R.

R. R. Chance, A. H. Miller, A. Frock, and R. Silbey, “Luminescent lifetimes near multiple interfaces. A quantative comparisin of theory and experiment,” Chem. Phys. Lett. 33(3), 590–592 (1975).
[CrossRef]

Szostak, R.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
[CrossRef]

Tsaryuk, V. I.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
[CrossRef]

Zhuravlev, K. P.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
[CrossRef]

Zolin, V. F.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
[CrossRef]

Chem. Phys.

J. Enderlein, “Single-molecule fluorescence near a metal layer,” Chem. Phys. 247(1), 1–9 (1999).
[CrossRef]

Chem. Phys. Lett.

R. R. Chance, A. H. Miller, A. Frock, and R. Silbey, “Luminescent lifetimes near multiple interfaces. A quantative comparisin of theory and experiment,” Chem. Phys. Lett. 33(3), 590–592 (1975).
[CrossRef]

J. Appl. Spectrosc.

V. I. Tsaryuk, K. P. Zhuravlev, V. F. Zolin, V. A. Kudryashova, J. Legendziewicz, and R. Szostak, “Luminescence efficiency of aromatic carboxylates of europium and terbium when methylene bridges and nitro groups are present in the ligands,” J. Appl. Spectrosc. 74(1), 51–59 (2007).
[CrossRef]

J. Mod. Opt.

W. L. Barnes, “Topical Review. Fluorescence near interfaces. The role of photonic mode density,” J. Mod. Opt. 45, 661–699 (1998).
[CrossRef]

J. Phys. D Appl. Phys.

J. R. Lakowicz, J. Malicka, I. Gryczynski, Z. Gryczynski, and C. D. Geddes, “Radiative decay engineering: the role of photonic mode density in biotechnology,” J. Phys. D Appl. Phys. 36(14), R240–R249 (2003).
[CrossRef] [PubMed]

Nat. Photonics

V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007).
[CrossRef]

Opt. Express

Phys. Rev. A

A. Reid and M. Piché, “Spontaneous emission in a nonhomogeneous medium: Definition of an effective polarizability,” Phys. Rev. A 46(1), 436–441 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[CrossRef] [PubMed]

Surf. Sci.

H. F. Arnodus, “Power emitted by a multipole near an interface,” Surf. Sci. 571(1-3), 173–186 (2004).
[CrossRef]

Other

N. Noginova, G. Zhu, M. Mayy, M. A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys. 103, 07E901, (2008).

M. Born, and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, (Pergamon Press, 1980).

A. A. Kaminskii, Laser Crystals: Their Physics and. Properties (Springer, 1981).

K. H. Drexhade, “Interaction of light with monomolecular dye layers,” Prog. Opt. 12, 162–231 (1974).

L. Novotny, and B. Hecht, Principles of Nano-Optics (Cambridge University Press, 2006)

L. D. Landau, L. P. Pitaevskii, and E. M. Lifshitz, Electrodynamics of Continuous Media (Butterworth-Heinemann, Oxford, 1984)

D. W. Lynch, and W. R. Hunter, “Comments on the optical constants of metals and an introduction to data for several metals” in Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

a) Schematic of the sample; b) arrangement of the experiment in the Fluoromax-3 spectrofluorometer; c) Typical emission spectra at s and p polarizations normalized to the transition at 614 nm.

Fig. 2
Fig. 2

Intensity ratios I590/I614 plotted versus angle θ for s polarization (squares) and p polarization (diamonds) for. (a) sample G0 – Eu-PVP film on glass, (b) sample Au0 – Eu-PVP film on gold, (c) sample S0 – Eu-PVP film on silver, (d) sample S1 – Eu-PVP film on silver/MUA (combined thickness of MUA/Eu-PVP ~42 nm), and (e) sample S2 – Eu-PVP film on silver MUA (combined thickness of MUA/Eu-PVP ~73 nm). Solid lines – guides for eye; the error bars approximately correspond to the character sizes.

Fig. 3
Fig. 3

Emission intensity ratios I590/I614 calculated for s and p polarizations and two different distances between Eu3+ ions and metallic surface, d = 25 nm (a) and d = 100 nm (b). The weight factors are ae 590 = 0.3, am 590 = 0.7, ae 614 = 0.9, am 614 = 0.1.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

ΓMΓE=ΓM0ΓE0ρMρE ,
IMIE=ΓMΓEΦM(Ω)dΩρMΦE(Ω)dΩρEhνMhνE=ΓM0ΓE0ΦM(Ω)ΦE(Ω)νMνE ,
Ise||=1+|ρs|2+2|ρs|cos(ϕ+δs) ,
Ipe||=(1+|ρp|2+2|ρp|cos(ϕ+δp+π))cos2θ0 .
Ise=0 ,
Ipe=(1+|ρpe|22|ρpe|cos(ϕ+δp+π))sin2θ0 .
ρse=ε1cosθε2ε1sin2θε1cosθ+ε2ε1sin2θ ;
ρpe=ε2cosθ0ε1(ε2ε1sin2θ)ε2cosθ0+ε1(ε2ε1sin2θ) ,
Ism||=(1+|ρse|22|ρse|cos(ϕ+δs))cos2θ0 ,
Ipm||=1+|ρpe|22|ρpe|cos(ϕ+δp+π) .
Ism=(1+|ρse|2+2|ρse|cos(ϕ+δs))sin2θ0 ,
Ipm=0 .

Metrics