Abstract

Using finite-difference time-domain method, we characterize the normal-incidence transmission properties of a two slab photonic crystal device in a view of its applications in fluorescence enhancement and multi-analyte detection. Individual slabs consist of a square or a triangular lattice of air holes embedded into a silicon nitride slab. The geometrical parameters are chosen so that the individual slabs operate in a guided resonance regime where strong reflectivity under the normal incidence angle is observed in a broad spectral range. When placed in the close proximity of each other, the two photonic crystal slab system exhibits a narrow Fabry-Perot type transmission peak corresponding to the excitation of a resonant mode in the cavity formed by the two slabs. We then study the effects of the size of the air gap between the two photonic crystal slabs on the spectral position and bandwidth of a resonance transmission peak. Finally, we investigate the electromagnetic energy distributions at the wavelength of a transmission resonance in the double slab photonic crystals. As a final result we demonstrate that this structure can provide electric field enhancement at the slab surface, which can be used for fluorescence enhancement.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Miyawaki, "Visualization of the spatial and temporal dynamics of intracellular signaling," Dev. Cell 4, 295 (2003).
    [CrossRef] [PubMed]
  2. T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. R. Moossa, and R. M. Hoffman, "Cancer Invasion and Micrometastasis Visualized in Live Tissue by Green Fluorescent Protein Expression," Cancer Res. 57, 2042 (1997).
    [PubMed]
  3. P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, "Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface," Appl. Opt. 46, 2351 (2007).
    [CrossRef] [PubMed]
  4. N. Ganesh,W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515 (2007).
    [CrossRef]
  5. P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, "Graded wavelength one-dimensional photonic crystal reveals spectral characteristics of enhanced fluorescence," J. Appl. Phys. 103, 094320 (2008).
    [CrossRef]
  6. N. Ganesh, P. C. Mathias,W. Zhang, and B. T. Cunningham, "Distance dependence of fluorescence enhancement from photonic crystal surfaces," J. Appl. Phys. 103, 083104 (2008).
    [CrossRef]
  7. Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phy. Lett. 90, 031911 (2007).
    [CrossRef]
  8. W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phy. Lett. 82, 1999 (2003).
    [CrossRef]
  9. W. Suh, O. Solgaard, and S. Fan, "Displacement sensing using evanescent tunneling between guidedresonances in photonic crystal slabs," J. Appl. Phys. 98, 033102 (2005).
    [CrossRef]
  10. R. Magnusson, and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
    [CrossRef]
  11. S. Peng and G. M. Morris, "Resonant scattering from two-dimensional gratings," J. Opt. Soc. Am. A 13, 993-1005 (1996).
    [CrossRef]
  12. M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, "Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice," Appl. Phys. Lett. 70, 1438-1440 (1997).
    [CrossRef]
  13. M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, "Spontaneous emission extraction and Purcell enhancement from thin-film 2-D photonic crystals," J. Lightwave Technol. 17, 2096-2112 (1999).
    [CrossRef]
  14. V. N. Astratov, I. S. Culshaw, R. M. Stevenson, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De la Rue, "Resonant coupling of near-infrared radiation to photonic band structure waveguides," J. Lightwave Technol. 17, 2050-2057 (1999).
    [CrossRef]
  15. V. Pacradouni,W. J. Mandeville, A. R. Cowan, P. Paddon, and J. F. Young, "Photonic band structure of dielectric membranes periodically textured in two dimensions," Phys. Rev. B,  62, 4204-4206 (2000).
    [CrossRef]
  16. A. R. Cowan, P. Paddon, V. Pacradouni, and J. F. Young, "Resonant scattering and mode coupling in two dimensional textured planar waveguides," J. Opt. Soc. Am. A 18, 1160-1170 (2001).
    [CrossRef]
  17. S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
    [CrossRef]
  18. M. Szekeres, O. Kamalin, R. A. Schoonheydt, K Wostyn, K. Clays, A. Persoonsc, and I. Dékány, "Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir Blodgett method," J. Mater. Chem. 12, 3268-3274 (2002).
    [CrossRef]
  19. O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, "Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders," Opt. Lett. 29, 2782-2784 (2004).
    [CrossRef] [PubMed]
  20. V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, "Angular and polarization properties of a photonic crystal slab mirror," Opt. Express 12, 1575-1582 (2004).
    [CrossRef] [PubMed]
  21. L. Landstr¨om, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, "Photonic properties of silicon-coated colloidal monolayers," Appl. Phys. A 81, 911-913 (2005).
    [CrossRef]
  22. A. Rosenberg, M.W. Carter, J. A. Casey, M. Kim, R. T. Holm, R. L. Henry, C. R. Eddy, V. A. Shamamian, and K. Bussmann, "Guided resonances in asymmetrical GaN photonic crystal slabs observed in the visible spectrum," Opt. Express 13, 6564-6571 (2005).
    [CrossRef] [PubMed]
  23. K. B. Crozier, V. Lousse, O. Kilic, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115126 (2006).
    [CrossRef]
  24. Z. Jian and D. M. Mittlemana, "Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy," J. Appl. Phys. 100, 123113-123118 (2006).
    [CrossRef]
  25. T. Prasad, V. L. Colvin, and D. M. Mittleman, "The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy," Opt. Express 15, 16954-16965 (2007).
    [CrossRef] [PubMed]
  26. J. L. Skinner, A. A. Talin, and D. A. Horsley, "A MEMS light modulator based on diffractive nanohole gratings," Opt. Express 16, 3701-3711 (2008).
    [CrossRef] [PubMed]
  27. L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K-J Boller,"Mid-IR transmission of a large-area 2D silicon photonic crystal slab," J. Phys. D: Appl. Phys. 41, 135105-135111 (2008).
    [CrossRef]
  28. Y. Nazirizadeh, J. G. Mller, U. Geyer, D. Schelle, E. Kley, A. T¨unnermann, U. Lemmer, and M. Gerken, "Optical characterization of photonic crystal slabs using orthogonally oriented polarization filters," Opt. Express 16, 7153-7160 (2008).
    [CrossRef] [PubMed]
  29. G. Alagappan, X. W. Sun, and M. B. Yu, "Out-of-plane diffraction of a two-dimenisonal photonic crystal with finite dielectric modulation," J. Opt. Soc. Am. A 25, 1098-1103 (2008).
    [CrossRef]
  30. S. G. Johnson, "Meep", http://ab-initio.mit.edu/wiki/index.php/Meep.
  31. E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).
  32. W. L. Barnes, G. Bjork, J. M. Gerard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002).
    [CrossRef]
  33. J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
    [CrossRef]
  34. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904-1-013904-4 (2005).
    [CrossRef]

2008 (6)

P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, "Graded wavelength one-dimensional photonic crystal reveals spectral characteristics of enhanced fluorescence," J. Appl. Phys. 103, 094320 (2008).
[CrossRef]

N. Ganesh, P. C. Mathias,W. Zhang, and B. T. Cunningham, "Distance dependence of fluorescence enhancement from photonic crystal surfaces," J. Appl. Phys. 103, 083104 (2008).
[CrossRef]

J. L. Skinner, A. A. Talin, and D. A. Horsley, "A MEMS light modulator based on diffractive nanohole gratings," Opt. Express 16, 3701-3711 (2008).
[CrossRef] [PubMed]

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K-J Boller,"Mid-IR transmission of a large-area 2D silicon photonic crystal slab," J. Phys. D: Appl. Phys. 41, 135105-135111 (2008).
[CrossRef]

Y. Nazirizadeh, J. G. Mller, U. Geyer, D. Schelle, E. Kley, A. T¨unnermann, U. Lemmer, and M. Gerken, "Optical characterization of photonic crystal slabs using orthogonally oriented polarization filters," Opt. Express 16, 7153-7160 (2008).
[CrossRef] [PubMed]

G. Alagappan, X. W. Sun, and M. B. Yu, "Out-of-plane diffraction of a two-dimenisonal photonic crystal with finite dielectric modulation," J. Opt. Soc. Am. A 25, 1098-1103 (2008).
[CrossRef]

2007 (4)

T. Prasad, V. L. Colvin, and D. M. Mittleman, "The effect of structural disorder on guided resonances in photonic crystal slabs studied with terahertz time-domain spectroscopy," Opt. Express 15, 16954-16965 (2007).
[CrossRef] [PubMed]

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phy. Lett. 90, 031911 (2007).
[CrossRef]

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, "Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface," Appl. Opt. 46, 2351 (2007).
[CrossRef] [PubMed]

N. Ganesh,W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515 (2007).
[CrossRef]

2006 (2)

K. B. Crozier, V. Lousse, O. Kilic, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115126 (2006).
[CrossRef]

Z. Jian and D. M. Mittlemana, "Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy," J. Appl. Phys. 100, 123113-123118 (2006).
[CrossRef]

2005 (3)

L. Landstr¨om, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, "Photonic properties of silicon-coated colloidal monolayers," Appl. Phys. A 81, 911-913 (2005).
[CrossRef]

A. Rosenberg, M.W. Carter, J. A. Casey, M. Kim, R. T. Holm, R. L. Henry, C. R. Eddy, V. A. Shamamian, and K. Bussmann, "Guided resonances in asymmetrical GaN photonic crystal slabs observed in the visible spectrum," Opt. Express 13, 6564-6571 (2005).
[CrossRef] [PubMed]

W. Suh, O. Solgaard, and S. Fan, "Displacement sensing using evanescent tunneling between guidedresonances in photonic crystal slabs," J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

2004 (2)

2003 (2)

A. Miyawaki, "Visualization of the spatial and temporal dynamics of intracellular signaling," Dev. Cell 4, 295 (2003).
[CrossRef] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phy. Lett. 82, 1999 (2003).
[CrossRef]

2002 (3)

S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
[CrossRef]

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K Wostyn, K. Clays, A. Persoonsc, and I. Dékány, "Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir Blodgett method," J. Mater. Chem. 12, 3268-3274 (2002).
[CrossRef]

W. L. Barnes, G. Bjork, J. M. Gerard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002).
[CrossRef]

2001 (1)

2000 (1)

V. Pacradouni,W. J. Mandeville, A. R. Cowan, P. Paddon, and J. F. Young, "Photonic band structure of dielectric membranes periodically textured in two dimensions," Phys. Rev. B,  62, 4204-4206 (2000).
[CrossRef]

1999 (2)

1998 (1)

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

1997 (2)

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, "Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice," Appl. Phys. Lett. 70, 1438-1440 (1997).
[CrossRef]

T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. R. Moossa, and R. M. Hoffman, "Cancer Invasion and Micrometastasis Visualized in Live Tissue by Green Fluorescent Protein Expression," Cancer Res. 57, 2042 (1997).
[PubMed]

1996 (1)

1992 (1)

R. Magnusson, and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

1946 (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).

Alagappan, G.

Arnold, N.

L. Landstr¨om, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, "Photonic properties of silicon-coated colloidal monolayers," Appl. Phys. A 81, 911-913 (2005).
[CrossRef]

Arts, R.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K-J Boller,"Mid-IR transmission of a large-area 2D silicon photonic crystal slab," J. Phys. D: Appl. Phys. 41, 135105-135111 (2008).
[CrossRef]

Astratov, V. N.

Barnes, W. L.

W. L. Barnes, G. Bjork, J. M. Gerard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002).
[CrossRef]

Bäuerle, D.

L. Landstr¨om, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, "Photonic properties of silicon-coated colloidal monolayers," Appl. Phys. A 81, 911-913 (2005).
[CrossRef]

Beigang, R.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K-J Boller,"Mid-IR transmission of a large-area 2D silicon photonic crystal slab," J. Phys. D: Appl. Phys. 41, 135105-135111 (2008).
[CrossRef]

Bhat, R.

Bjork, G.

W. L. Barnes, G. Bjork, J. M. Gerard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002).
[CrossRef]

Boller, K-J

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K-J Boller,"Mid-IR transmission of a large-area 2D silicon photonic crystal slab," J. Phys. D: Appl. Phys. 41, 135105-135111 (2008).
[CrossRef]

Boroditsky, M.

Brodoceanu, D.

L. Landstr¨om, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, "Photonic properties of silicon-coated colloidal monolayers," Appl. Phys. A 81, 911-913 (2005).
[CrossRef]

Busch, A.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, "Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice," Appl. Phys. Lett. 70, 1438-1440 (1997).
[CrossRef]

Bussmann, K.

Carter, M.W.

Casey, J. A.

Chan, L. L.

Chishima, T.

T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. R. Moossa, and R. M. Hoffman, "Cancer Invasion and Micrometastasis Visualized in Live Tissue by Green Fluorescent Protein Expression," Cancer Res. 57, 2042 (1997).
[PubMed]

Chow, E.

N. Ganesh,W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515 (2007).
[CrossRef]

Clays, K.

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K Wostyn, K. Clays, A. Persoonsc, and I. Dékány, "Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir Blodgett method," J. Mater. Chem. 12, 3268-3274 (2002).
[CrossRef]

Coccioli, R.

Colvin, V. L.

Costard, E.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Cowan, A. R.

A. R. Cowan, P. Paddon, V. Pacradouni, and J. F. Young, "Resonant scattering and mode coupling in two dimensional textured planar waveguides," J. Opt. Soc. Am. A 18, 1160-1170 (2001).
[CrossRef]

V. Pacradouni,W. J. Mandeville, A. R. Cowan, P. Paddon, and J. F. Young, "Photonic band structure of dielectric membranes periodically textured in two dimensions," Phys. Rev. B,  62, 4204-4206 (2000).
[CrossRef]

Crozier, K. B.

K. B. Crozier, V. Lousse, O. Kilic, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115126 (2006).
[CrossRef]

Culshaw, I. S.

Cunningham, B. T.

P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, "Graded wavelength one-dimensional photonic crystal reveals spectral characteristics of enhanced fluorescence," J. Appl. Phys. 103, 094320 (2008).
[CrossRef]

N. Ganesh, P. C. Mathias,W. Zhang, and B. T. Cunningham, "Distance dependence of fluorescence enhancement from photonic crystal surfaces," J. Appl. Phys. 103, 083104 (2008).
[CrossRef]

N. Ganesh,W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515 (2007).
[CrossRef]

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, "Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface," Appl. Opt. 46, 2351 (2007).
[CrossRef] [PubMed]

De la Rue, R. M.

Dékány, I.

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K Wostyn, K. Clays, A. Persoonsc, and I. Dékány, "Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir Blodgett method," J. Mater. Chem. 12, 3268-3274 (2002).
[CrossRef]

Eddy, C. R.

Fallnich, C.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K-J Boller,"Mid-IR transmission of a large-area 2D silicon photonic crystal slab," J. Phys. D: Appl. Phys. 41, 135105-135111 (2008).
[CrossRef]

Fan, S.

K. B. Crozier, V. Lousse, O. Kilic, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115126 (2006).
[CrossRef]

W. Suh, O. Solgaard, and S. Fan, "Displacement sensing using evanescent tunneling between guidedresonances in photonic crystal slabs," J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, "Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders," Opt. Lett. 29, 2782-2784 (2004).
[CrossRef] [PubMed]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, "Angular and polarization properties of a photonic crystal slab mirror," Opt. Express 12, 1575-1582 (2004).
[CrossRef] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phy. Lett. 82, 1999 (2003).
[CrossRef]

S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Ganesh, N.

N. Ganesh, P. C. Mathias,W. Zhang, and B. T. Cunningham, "Distance dependence of fluorescence enhancement from photonic crystal surfaces," J. Appl. Phys. 103, 083104 (2008).
[CrossRef]

P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, "Graded wavelength one-dimensional photonic crystal reveals spectral characteristics of enhanced fluorescence," J. Appl. Phys. 103, 094320 (2008).
[CrossRef]

N. Ganesh,W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515 (2007).
[CrossRef]

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, "Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface," Appl. Opt. 46, 2351 (2007).
[CrossRef] [PubMed]

Gayral, B.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Gerard, J. M.

W. L. Barnes, G. Bjork, J. M. Gerard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002).
[CrossRef]

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Gerken, M.

Geyer, U.

Gross, P.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K-J Boller,"Mid-IR transmission of a large-area 2D silicon photonic crystal slab," J. Phys. D: Appl. Phys. 41, 135105-135111 (2008).
[CrossRef]

Hagen, R.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K-J Boller,"Mid-IR transmission of a large-area 2D silicon photonic crystal slab," J. Phys. D: Appl. Phys. 41, 135105-135111 (2008).
[CrossRef]

Hane, K.

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phy. Lett. 90, 031911 (2007).
[CrossRef]

Henry, R. L.

Hoffman, R. M.

T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. R. Moossa, and R. M. Hoffman, "Cancer Invasion and Micrometastasis Visualized in Live Tissue by Green Fluorescent Protein Expression," Cancer Res. 57, 2042 (1997).
[PubMed]

Holm, R. T.

Horsley, D. A.

Jian, Z.

Z. Jian and D. M. Mittlemana, "Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy," J. Appl. Phys. 100, 123113-123118 (2006).
[CrossRef]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
[CrossRef]

Johnson, S. R.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, "Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice," Appl. Phys. Lett. 70, 1438-1440 (1997).
[CrossRef]

Jonsson, P.

W. L. Barnes, G. Bjork, J. M. Gerard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002).
[CrossRef]

Kamalin, O.

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K Wostyn, K. Clays, A. Persoonsc, and I. Dékány, "Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir Blodgett method," J. Mater. Chem. 12, 3268-3274 (2002).
[CrossRef]

Kanamori, Y.

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phy. Lett. 90, 031911 (2007).
[CrossRef]

Kanskar, M.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, "Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice," Appl. Phys. Lett. 70, 1438-1440 (1997).
[CrossRef]

Kilic, O.

Kim, M.

Kim, S.

Kitani, T.

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phy. Lett. 90, 031911 (2007).
[CrossRef]

Kley, E.

Krauss, T. F.

Kuipers, L.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K-J Boller,"Mid-IR transmission of a large-area 2D silicon photonic crystal slab," J. Phys. D: Appl. Phys. 41, 135105-135111 (2008).
[CrossRef]

Landstr¨om, L.

L. Landstr¨om, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, "Photonic properties of silicon-coated colloidal monolayers," Appl. Phys. A 81, 911-913 (2005).
[CrossRef]

Legrand, B.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Lemmer, U.

Lousse, V.

K. B. Crozier, V. Lousse, O. Kilic, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115126 (2006).
[CrossRef]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, "Angular and polarization properties of a photonic crystal slab mirror," Opt. Express 12, 1575-1582 (2004).
[CrossRef] [PubMed]

MacKenzie, J.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, "Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice," Appl. Phys. Lett. 70, 1438-1440 (1997).
[CrossRef]

Magnusson, R.

R. Magnusson, and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Malyarchuk, V.

N. Ganesh,W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515 (2007).
[CrossRef]

Mandeville, W. J.

V. Pacradouni,W. J. Mandeville, A. R. Cowan, P. Paddon, and J. F. Young, "Photonic band structure of dielectric membranes periodically textured in two dimensions," Phys. Rev. B,  62, 4204-4206 (2000).
[CrossRef]

Mathias, P. C.

P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, "Graded wavelength one-dimensional photonic crystal reveals spectral characteristics of enhanced fluorescence," J. Appl. Phys. 103, 094320 (2008).
[CrossRef]

N. Ganesh, P. C. Mathias,W. Zhang, and B. T. Cunningham, "Distance dependence of fluorescence enhancement from photonic crystal surfaces," J. Appl. Phys. 103, 083104 (2008).
[CrossRef]

N. Ganesh,W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515 (2007).
[CrossRef]

P. C. Mathias, N. Ganesh, L. L. Chan, and B. T. Cunningham, "Combined enhanced fluorescence and label-free biomolecular detection with a photonic crystal surface," Appl. Opt. 46, 2351 (2007).
[CrossRef] [PubMed]

Mittleman, D. M.

Mittlemana, D. M.

Z. Jian and D. M. Mittlemana, "Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy," J. Appl. Phys. 100, 123113-123118 (2006).
[CrossRef]

Miyagi, Y.

T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. R. Moossa, and R. M. Hoffman, "Cancer Invasion and Micrometastasis Visualized in Live Tissue by Green Fluorescent Protein Expression," Cancer Res. 57, 2042 (1997).
[PubMed]

Miyawaki, A.

A. Miyawaki, "Visualization of the spatial and temporal dynamics of intracellular signaling," Dev. Cell 4, 295 (2003).
[CrossRef] [PubMed]

Mller, J. G.

Moossa, A. R.

T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. R. Moossa, and R. M. Hoffman, "Cancer Invasion and Micrometastasis Visualized in Live Tissue by Green Fluorescent Protein Expression," Cancer Res. 57, 2042 (1997).
[PubMed]

Morin, R.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, "Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice," Appl. Phys. Lett. 70, 1438-1440 (1997).
[CrossRef]

Morris, G. M.

Nazirizadeh, Y.

Pacradouni, V.

A. R. Cowan, P. Paddon, V. Pacradouni, and J. F. Young, "Resonant scattering and mode coupling in two dimensional textured planar waveguides," J. Opt. Soc. Am. A 18, 1160-1170 (2001).
[CrossRef]

V. Pacradouni,W. J. Mandeville, A. R. Cowan, P. Paddon, and J. F. Young, "Photonic band structure of dielectric membranes periodically textured in two dimensions," Phys. Rev. B,  62, 4204-4206 (2000).
[CrossRef]

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, "Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice," Appl. Phys. Lett. 70, 1438-1440 (1997).
[CrossRef]

Paddon, P.

A. R. Cowan, P. Paddon, V. Pacradouni, and J. F. Young, "Resonant scattering and mode coupling in two dimensional textured planar waveguides," J. Opt. Soc. Am. A 18, 1160-1170 (2001).
[CrossRef]

V. Pacradouni,W. J. Mandeville, A. R. Cowan, P. Paddon, and J. F. Young, "Photonic band structure of dielectric membranes periodically textured in two dimensions," Phys. Rev. B,  62, 4204-4206 (2000).
[CrossRef]

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, "Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice," Appl. Phys. Lett. 70, 1438-1440 (1997).
[CrossRef]

Peng, S.

Persoonsc, A.

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K Wostyn, K. Clays, A. Persoonsc, and I. Dékány, "Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir Blodgett method," J. Mater. Chem. 12, 3268-3274 (2002).
[CrossRef]

Peter, Y.-A.

Piglmayer, K.

L. Landstr¨om, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, "Photonic properties of silicon-coated colloidal monolayers," Appl. Phys. A 81, 911-913 (2005).
[CrossRef]

Prasad, T.

Prodan, L.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K-J Boller,"Mid-IR transmission of a large-area 2D silicon photonic crystal slab," J. Phys. D: Appl. Phys. 41, 135105-135111 (2008).
[CrossRef]

Purcell, E. M.

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).

Rosenberg, A.

Schelle, D.

Schirmacher, A.

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K-J Boller,"Mid-IR transmission of a large-area 2D silicon photonic crystal slab," J. Phys. D: Appl. Phys. 41, 135105-135111 (2008).
[CrossRef]

Schoonheydt, R. A.

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K Wostyn, K. Clays, A. Persoonsc, and I. Dékány, "Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir Blodgett method," J. Mater. Chem. 12, 3268-3274 (2002).
[CrossRef]

Sermage, B.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Shamamian, V. A.

Shimada, H.

T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. R. Moossa, and R. M. Hoffman, "Cancer Invasion and Micrometastasis Visualized in Live Tissue by Green Fluorescent Protein Expression," Cancer Res. 57, 2042 (1997).
[PubMed]

Skinner, J. L.

Skolnick, M. S.

Smith, A. D.

N. Ganesh,W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515 (2007).
[CrossRef]

Soares, J. A. N. T.

N. Ganesh,W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515 (2007).
[CrossRef]

Solgaard, O.

K. B. Crozier, V. Lousse, O. Kilic, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115126 (2006).
[CrossRef]

W. Suh, O. Solgaard, and S. Fan, "Displacement sensing using evanescent tunneling between guidedresonances in photonic crystal slabs," J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, "Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders," Opt. Lett. 29, 2782-2784 (2004).
[CrossRef] [PubMed]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, "Angular and polarization properties of a photonic crystal slab mirror," Opt. Express 12, 1575-1582 (2004).
[CrossRef] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phy. Lett. 82, 1999 (2003).
[CrossRef]

Stevenson, R. M.

Sudbø, A. S.

Suh, W.

W. Suh, O. Solgaard, and S. Fan, "Displacement sensing using evanescent tunneling between guidedresonances in photonic crystal slabs," J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, "Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders," Opt. Lett. 29, 2782-2784 (2004).
[CrossRef] [PubMed]

V. Lousse, W. Suh, O. Kilic, S. Kim, O. Solgaard, and S. Fan, "Angular and polarization properties of a photonic crystal slab mirror," Opt. Express 12, 1575-1582 (2004).
[CrossRef] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phy. Lett. 82, 1999 (2003).
[CrossRef]

Sun, X. W.

Szekeres, M.

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K Wostyn, K. Clays, A. Persoonsc, and I. Dékány, "Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir Blodgett method," J. Mater. Chem. 12, 3268-3274 (2002).
[CrossRef]

T¨unnermann, A.

Talin, A. A.

Thierry-Mieg, V.

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Tiedje, T.

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, "Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice," Appl. Phys. Lett. 70, 1438-1440 (1997).
[CrossRef]

Vrijen, R.

Wang, S. S.

R. Magnusson, and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Wang, X.

T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. R. Moossa, and R. M. Hoffman, "Cancer Invasion and Micrometastasis Visualized in Live Tissue by Green Fluorescent Protein Expression," Cancer Res. 57, 2042 (1997).
[PubMed]

Wasey, J. A. E.

W. L. Barnes, G. Bjork, J. M. Gerard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002).
[CrossRef]

Whittaker, D. M.

Worthing, P. T.

W. L. Barnes, G. Bjork, J. M. Gerard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002).
[CrossRef]

Wostyn, K

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K Wostyn, K. Clays, A. Persoonsc, and I. Dékány, "Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir Blodgett method," J. Mater. Chem. 12, 3268-3274 (2002).
[CrossRef]

Yablonovitch, E.

Yamaoka, H.

T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. R. Moossa, and R. M. Hoffman, "Cancer Invasion and Micrometastasis Visualized in Live Tissue by Green Fluorescent Protein Expression," Cancer Res. 57, 2042 (1997).
[PubMed]

Yanik, M. F.

O. Kilic, S. Kim, W. Suh, Y.-A. Peter, A. S. Sudbø, M. F. Yanik, S. Fan, and O. Solgaard, "Photonic crystal slabs demonstrating strong broadband suppression of transmission in the presence of disorders," Opt. Lett. 29, 2782-2784 (2004).
[CrossRef] [PubMed]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phy. Lett. 82, 1999 (2003).
[CrossRef]

Young, J. F.

A. R. Cowan, P. Paddon, V. Pacradouni, and J. F. Young, "Resonant scattering and mode coupling in two dimensional textured planar waveguides," J. Opt. Soc. Am. A 18, 1160-1170 (2001).
[CrossRef]

V. Pacradouni,W. J. Mandeville, A. R. Cowan, P. Paddon, and J. F. Young, "Photonic band structure of dielectric membranes periodically textured in two dimensions," Phys. Rev. B,  62, 4204-4206 (2000).
[CrossRef]

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, "Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice," Appl. Phys. Lett. 70, 1438-1440 (1997).
[CrossRef]

Yu, M. B.

Zhang, W.

P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, "Graded wavelength one-dimensional photonic crystal reveals spectral characteristics of enhanced fluorescence," J. Appl. Phys. 103, 094320 (2008).
[CrossRef]

N. Ganesh, P. C. Mathias,W. Zhang, and B. T. Cunningham, "Distance dependence of fluorescence enhancement from photonic crystal surfaces," J. Appl. Phys. 103, 083104 (2008).
[CrossRef]

N. Ganesh,W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515 (2007).
[CrossRef]

Zwiller, V.

W. L. Barnes, G. Bjork, J. M. Gerard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002).
[CrossRef]

Appl. Opt. (1)

Appl. Phy. Lett. (2)

Y. Kanamori, T. Kitani, and K. Hane, "Control of guided resonance in a photonic crystal slab using microelectromechanical actuators," Appl. Phy. Lett. 90, 031911 (2007).
[CrossRef]

W. Suh, M. F. Yanik, O. Solgaard, and S. Fan, "Displacement-sensitive photonic crystal structures based on guided resonance in photonic crystal slabs," Appl. Phy. Lett. 82, 1999 (2003).
[CrossRef]

Appl. Phys. A (1)

L. Landstr¨om, D. Brodoceanu, N. Arnold, K. Piglmayer, and D. Bäuerle, "Photonic properties of silicon-coated colloidal monolayers," Appl. Phys. A 81, 911-913 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

M. Kanskar, P. Paddon, V. Pacradouni, R. Morin, A. Busch, J. F. Young, S. R. Johnson, J. MacKenzie, and T. Tiedje, "Observation of leaky slab modes in an air-bridged semiconductor waveguide with a two-dimensional photonic lattice," Appl. Phys. Lett. 70, 1438-1440 (1997).
[CrossRef]

R. Magnusson, and S. S. Wang, "New principle for optical filters," Appl. Phys. Lett. 61, 1022-1024 (1992).
[CrossRef]

Cancer Res. (1)

T. Chishima, Y. Miyagi, X. Wang, H. Yamaoka, H. Shimada, A. R. Moossa, and R. M. Hoffman, "Cancer Invasion and Micrometastasis Visualized in Live Tissue by Green Fluorescent Protein Expression," Cancer Res. 57, 2042 (1997).
[PubMed]

Dev. Cell (1)

A. Miyawaki, "Visualization of the spatial and temporal dynamics of intracellular signaling," Dev. Cell 4, 295 (2003).
[CrossRef] [PubMed]

Eur. Phys. J. D (1)

W. L. Barnes, G. Bjork, J. M. Gerard, P. Jonsson, J. A. E. Wasey, P. T. Worthing, and V. Zwiller, "Solid-state single photon sources: light collection strategies," Eur. Phys. J. D 18, 197-210 (2002).
[CrossRef]

J. Appl. Phys. (4)

Z. Jian and D. M. Mittlemana, "Characterization of guided resonances in photonic crystal slabs using terahertz time-domain spectroscopy," J. Appl. Phys. 100, 123113-123118 (2006).
[CrossRef]

W. Suh, O. Solgaard, and S. Fan, "Displacement sensing using evanescent tunneling between guidedresonances in photonic crystal slabs," J. Appl. Phys. 98, 033102 (2005).
[CrossRef]

P. C. Mathias, N. Ganesh, W. Zhang, and B. T. Cunningham, "Graded wavelength one-dimensional photonic crystal reveals spectral characteristics of enhanced fluorescence," J. Appl. Phys. 103, 094320 (2008).
[CrossRef]

N. Ganesh, P. C. Mathias,W. Zhang, and B. T. Cunningham, "Distance dependence of fluorescence enhancement from photonic crystal surfaces," J. Appl. Phys. 103, 083104 (2008).
[CrossRef]

J. Lightwave Technol. (2)

J. Mater. Chem. (1)

M. Szekeres, O. Kamalin, R. A. Schoonheydt, K Wostyn, K. Clays, A. Persoonsc, and I. Dékány, "Ordering and optical properties of monolayers and multilayers of silica spheres deposited by the Langmuir Blodgett method," J. Mater. Chem. 12, 3268-3274 (2002).
[CrossRef]

J. Opt. Soc. Am. A (3)

J. Phys. D: Appl. Phys. (1)

L. Prodan, R. Hagen, P. Gross, R. Arts, R. Beigang, C. Fallnich, A. Schirmacher, L. Kuipers, and K-J Boller,"Mid-IR transmission of a large-area 2D silicon photonic crystal slab," J. Phys. D: Appl. Phys. 41, 135105-135111 (2008).
[CrossRef]

Nature Nanotech. (1)

N. Ganesh,W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, "Enhanced fluorescence emission from quantum dots on a photonic crystal surface," Nature Nanotech. 2, 515 (2007).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, "Spontaneous emission probabilities at radio frequencies," Phys. Rev. 69, 681 (1946).

Phys. Rev. B (3)

K. B. Crozier, V. Lousse, O. Kilic, S. Fan, and O. Solgaard, "Air-bridged photonic crystal slabs at visible and near-infrared wavelengths," Phys. Rev. B 73, 115126 (2006).
[CrossRef]

S. Fan and J. D. Joannopoulos, "Analysis of guided resonances in photonic crystal slabs," Phys. Rev. B 65, 235112 (2002).
[CrossRef]

V. Pacradouni,W. J. Mandeville, A. R. Cowan, P. Paddon, and J. F. Young, "Photonic band structure of dielectric membranes periodically textured in two dimensions," Phys. Rev. B,  62, 4204-4206 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

J. M. Gerard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, "Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity," Phys. Rev. Lett. 81, 1110-1113 (1998).
[CrossRef]

Other (2)

D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vučković, "Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal," Phys. Rev. Lett. 95, 013904-1-013904-4 (2005).
[CrossRef]

S. G. Johnson, "Meep", http://ab-initio.mit.edu/wiki/index.php/Meep.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematics of the two PhC lattices used in simulations. The area surrounded by blue dash line denotes the computation domain (unit cell). Top view of the (a) square, and (b) triangular PhC lattices. xz cross sections through the middle of the units cells of the (c) single slab, and (d) double slab geometries.

Fig. 2.
Fig. 2.

Reflection spectra of selected single PhC slab structures having strong broadband reflectivities.

Fig. 3.
Fig. 3.

Transmission spectra of the two slab PhCs. Different colors denote different sizes of the gap g separating the two slabs. (a), (b) and (c) are for the square lattice PhCs. (d), (e) and (f) are for the triangular lattice PhCs.

Fig. 4.
Fig. 4.

Snapshots of the electromagnetic field energy distributions across the xz plane of a unit cell. Individual distributions are calculated using a CW plane wave excitation source with a frequency corresponding to the frequencies of respective transmission resonances (red curves) in Figs. 3(a-f), g=1.2a or g=1.0a.

Fig. 5.
Fig. 5.

Time averaged linear density of the electric energy (red lines), magnetic energy (green lines) and total energy (blue lines) along the z direction. The yellow areas denote positions of the PhC slabs. Individual densities are calculated using a CWplane wave excitation source with a frequency corresponding to the frequencies of respective transmission resonances (red curves) in Figs. 3(a–f), g=1.2a or g=1.0a.

Fig. 6.
Fig. 6.

(a) Transmissions of the structures of Fig. 5(c) (solid lines), with a 0.05a thick SiO2 layer (dash lines) and a 0.10a thick SiO2 layer (dot lines) for different gaps g. (b) and (c): same as Fig. 5(c) with respectively a 0.05a and 0.10a thick SiO2 layer added (cyan area), at the frequencies of the red peaks of (a).

Fig. 7.
Fig. 7.

(a) Ratio of linear electric energy density at the external surface of a PhC slab to the average linear electric energy density in the gap (Usurf/Ugap ) vs. quality factor (Q) of the double layer PhC cavity system. (b) Linear energy density at the external surface of a PhC slab (Usurf ) vs. quality factor (Q) – the red denotes the electric energy and the blue denotes the total energy – and electric field intensity at the external air/slab interface divided by maximum electric field intensity in the whole structure (|Esurf |2/|Emax |2, magenta). In all the plots, squares represent data for square lattice and triangles for triangular lattice.

Metrics