Abstract

We propose a Bragg grating resonance sensor based on long-range surface plasmon-polaritons (LRSPP) excited on an asymmetric double-electrode waveguide structure. The proposed LRSPP waveguide sensor utilizes spectral resonance of the asymmetric double-electrode structure by adding a Bragg grating layer on the top surface of the metal slab. We have numerically estimated the bulk index resolution and thickness detection limit of a target biomolecule layer under 30 dB total propagation loss. The sub-μm fluidic channel between the two metal layers always experiences a highly confined LRSPP mode excited by end-fire coupling with optical fibers, therefore the proposed LRSPP sensor platform can be applied to a variety of integrated sensor-chip scenarios.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
    [CrossRef] [PubMed]
  2. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  3. P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10(10), 105010 (2008).
    [CrossRef]
  4. Website, http://www.biacore.com/lifesciences/index.html .
  5. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  6. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  7. G. Nemova and R. Kashyap, “Fiber-Bragg-grating-assisted surface plasmon-polariton sensor,” Opt. Lett. 31(14), 2118–2120 (2006).
    [CrossRef] [PubMed]
  8. M.-H. Chiu, S.-F. Wang, and R.-S. Chang, “D-type fiber biosensor based on surface-plasmon resonance technology and heterodyne interferometry,” Opt. Lett. 30(3), 233–235 (2005).
    [CrossRef] [PubMed]
  9. S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Side-polished optical fiber grating-based refractive index sensors utilizing the pure surface plasmon polariton,” J. Lightwave Technol. 26(13), 1980–1985 (2008).
    [CrossRef]
  10. G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
    [CrossRef]
  11. P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
    [CrossRef] [PubMed]
  12. Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett. 92(16), 161103 (2008).
    [CrossRef]
  13. E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
    [CrossRef]
  14. We used a commercial FEM tool of FEMLABTM 3.1 (now, MULTIPHYSICSTM), COMSOL, Inc.
  15. C. M. Kim and R. V. Ramaswamy, “Overlap integral factors in integrated optic modulators and switches,” J. Lightwave Technol. 7(7), 1063–1070 (1989).
    [CrossRef]
  16. P. Yeh, Optical waves in layered Media (Wiley and Sons, New York, 1988).

2008 (5)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10(10), 105010 (2008).
[CrossRef]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

S. M. Tripathi, A. Kumar, E. Marin, and J.-P. Meunier, “Side-polished optical fiber grating-based refractive index sensors utilizing the pure surface plasmon polariton,” J. Lightwave Technol. 26(13), 1980–1985 (2008).
[CrossRef]

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett. 92(16), 161103 (2008).
[CrossRef]

2007 (2)

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (1)

2001 (1)

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1989 (1)

C. M. Kim and R. V. Ramaswamy, “Overlap integral factors in integrated optic modulators and switches,” J. Lightwave Technol. 7(7), 1063–1070 (1989).
[CrossRef]

1969 (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Berini, P.

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10(10), 105010 (2008).
[CrossRef]

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
[CrossRef] [PubMed]

Chang, R.-S.

Charbonneau, R.

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
[CrossRef] [PubMed]

Chiu, M.-H.

Economou, E. N.

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Joo, Y. H.

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett. 92(16), 161103 (2008).
[CrossRef]

Ju, J. J.

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett. 92(16), 161103 (2008).
[CrossRef]

Jung, M. J.

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett. 92(16), 161103 (2008).
[CrossRef]

Kashyap, R.

Kim, C. M.

C. M. Kim and R. V. Ramaswamy, “Overlap integral factors in integrated optic modulators and switches,” J. Lightwave Technol. 7(7), 1063–1070 (1989).
[CrossRef]

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Kumar, A.

Lahoud, N.

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
[CrossRef] [PubMed]

Marin, E.

Meunier, J.-P.

Nemova, G.

Nenninger, G. G.

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[CrossRef]

Park, S.

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett. 92(16), 161103 (2008).
[CrossRef]

Ramaswamy, R. V.

C. M. Kim and R. V. Ramaswamy, “Overlap integral factors in integrated optic modulators and switches,” J. Lightwave Technol. 7(7), 1063–1070 (1989).
[CrossRef]

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Song, S. H.

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett. 92(16), 161103 (2008).
[CrossRef]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Tobiska, P.

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[CrossRef]

Tripathi, S. M.

Wang, S.-F.

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Won, H. S.

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett. 92(16), 161103 (2008).
[CrossRef]

Yee, S. S.

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Yoon, J.

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett. 92(16), 161103 (2008).
[CrossRef]

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Anal. Chim. Acta (1)

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett. 92(16), 161103 (2008).
[CrossRef]

Biosens. Bioelectron. (1)

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23(2), 151–160 (2007).
[CrossRef] [PubMed]

Chem. Rev. (1)

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

J. Lightwave Technol. (2)

N. J. Phys. (1)

P. Berini, “Bulk and surface sensitivities of surface plasmon waveguides,” N. J. Phys. 10(10), 105010 (2008).
[CrossRef]

Nano Lett. (1)

P. Berini, R. Charbonneau, and N. Lahoud, “Long-range surface plasmons on ultrathin membranes,” Nano Lett. 7(5), 1376–1380 (2007).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. (1)

E. N. Economou, “Surface plasmons in thin films,” Phys. Rev. 182(2), 539–554 (1969).
[CrossRef]

Sens. Actuators B Chem. (2)

G. G. Nenninger, P. Tobiska, J. Homola, and S. S. Yee, “Long-range surface plasmons for high-resolution surface plasmon resonance sensors,” Sens. Actuators B Chem. 74(1-3), 145–151 (2001).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Other (3)

Website, http://www.biacore.com/lifesciences/index.html .

We used a commercial FEM tool of FEMLABTM 3.1 (now, MULTIPHYSICSTM), COMSOL, Inc.

P. Yeh, Optical waves in layered Media (Wiley and Sons, New York, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of an asymmetric double-electrode LRSPP waveguide.

Fig. 2
Fig. 2

(a); Schematic of an asymmetric double-electrode LRSPP waveguide structure with a μ-fluidic channel in the core layer. (b) and (c); SEM images of the central and edge parts of the 450 nm-thick, empty μ-fluidic channel. (d)-(f); Far-field output images showing extinction of the LRSPP mode on diluting of the index-matching oil filling the channel with low-index solvent (acetone). The white bar inserted in (d) is 10 μm in length.

Fig. 3
Fig. 3

Schematics of the asymmetric double-electrode LRSPP biosensor. A Bragg grating on the bottom of the channel is shown in (a). Details including the biorecognition layers covering the gold strip and slab surfaces are in (b), and a single period (Λ) of the Bragg grating with a height of Dg in (c)

Fig. 4
Fig. 4

Numerical estimation of index and thickness resolutions of the asymmetric LRSPP waveguide sensor. Measurement setup is depicted in the inset of (d), and four different grating heights, Dg, from 20 nm to 80 nm, are considered and are denoted by four different symbols in (a). (a) Bragg wavelength shift with different refractive index of the bulk solution filling the fluidic channel. (b) Refractive index resolution with various grating lengths, Lg, defined in the inset of (d). (c) Total loss of the fiber butt-coupled asymmetric waveguide sensor. (d) Thickness resolution of the biomolecular adsorption layer.

Metrics