Abstract

Recently, joint Spectral and Time domain Optical Coherence Tomography (joint STdOCT) has been proposed to measure ocular blood flow velocity. Limitations of CCD technology allowed only for two-dimensional imaging at that time. In this paper we demonstrate fast three-dimensional STdOCT based on ultrahigh speed CMOS camera. Proposed method is straightforward, fully automatic and does not require any advanced image processing techniques. Three-dimensional distributions of axial velocity components of the blood in human eye vasculature are presented: in retinal and, for the first time, in choroidal layer. Different factors that affect quality of velocity images are discussed. Additionally, the quantitative measurement allows to observe a new interesting optical phenomenon – random Doppler shift in OCT signals that forms a vascular pattern at the depth of sclera.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
    [CrossRef] [PubMed]
  2. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004).
    [CrossRef] [PubMed]
  3. B. J. Kaluzny, B. J. Kaluzy, J. J. Kałuzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
    [PubMed]
  4. W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
    [CrossRef] [PubMed]
  5. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000).
    [CrossRef]
  6. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13(25), 10217–10229 (2005).
    [CrossRef] [PubMed]
  7. R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
    [CrossRef] [PubMed]
  8. V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006).
    [CrossRef] [PubMed]
  9. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
    [CrossRef] [PubMed]
  10. S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
    [CrossRef] [PubMed]
  11. Y. Hong, S. Makita, M. Yamanari, M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, “Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography,” Opt. Express 15(12), 7538–7550 (2007).
    [CrossRef] [PubMed]
  12. L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
    [CrossRef] [PubMed]
  13. A. Bachmann, M. Villiger, C. Blatter, T. Lasser, and R. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15, 408–422 (2007).
    [CrossRef] [PubMed]
  14. Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17(5), 4177–4188 (2009).
    [CrossRef] [PubMed]
  15. T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
    [CrossRef] [PubMed]
  16. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
    [CrossRef] [PubMed]
  17. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
    [CrossRef]
  18. Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
    [CrossRef] [PubMed]
  19. T. Bajraszewski, M. Wojtkowski, P. Targowski, M. Szkulmowski, and A. Kowalczyk, “Three-dimensional in vivo imaging by spectral OCT,” Proc. SPIE 5316, 226–232 (2004).
    [CrossRef]

2009 (2)

2008 (3)

2007 (2)

2006 (3)

2005 (1)

2004 (2)

2003 (3)

2002 (2)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
[CrossRef]

2000 (1)

An, L.

Bachmann, A.

Bajraszewski, T.

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

B. J. Kaluzny, B. J. Kaluzy, J. J. Kałuzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

T. Bajraszewski, M. Wojtkowski, P. Targowski, M. Szkulmowski, and A. Kowalczyk, “Three-dimensional in vivo imaging by spectral OCT,” Proc. SPIE 5316, 226–232 (2004).
[CrossRef]

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

Blatter, C.

Bouma, B.

Bouma, B. E.

Cense, B.

Chen, T.

Chen, T. C.

Davis, A. M.

de Boer, J.

de Boer, J. F.

Drexler, W.

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[CrossRef] [PubMed]

Duker, J. S.

Fercher, A. F.

Findl, O.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[CrossRef] [PubMed]

Fujimoto, J. G.

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006).
[CrossRef] [PubMed]

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[CrossRef] [PubMed]

Gorczynska, I.

B. J. Kaluzny, B. J. Kaluzy, J. J. Kałuzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

Götzinger, E.

Hermann, B.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Hong, Y.

Izatt, J. A.

Kaluzny, B. J.

B. J. Kaluzny, B. J. Kaluzy, J. J. Kałuzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

Kaluzny, J. J.

B. J. Kaluzny, B. J. Kaluzy, J. J. Kałuzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

Kaluzy, B. J.

B. J. Kaluzny, B. J. Kaluzy, J. J. Kałuzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

Kennedy, K. M.

Kim, S.

Ko, T. H.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[CrossRef] [PubMed]

Kolbitsch, C.

Kowalczyk, A.

Lasser, T.

Leitgeb, R.

Leitgeb, R. A.

Makita, S.

Miura, M.

Nassif, N.

Park, B.

Park, B. H.

Pierce, M.

Pircher, M.

Sattmann, H.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[CrossRef] [PubMed]

Schmetterer, L.

Schmoll, T.

Scholda, C.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[CrossRef] [PubMed]

Srinivasan, V. J.

Sticker, M.

Stur, M.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[CrossRef] [PubMed]

Szkulmowska, A.

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

B. J. Kaluzny, B. J. Kaluzy, J. J. Kałuzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

Szkulmowski, M.

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

B. J. Kaluzny, B. J. Kaluzy, J. J. Kałuzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

T. Bajraszewski, M. Wojtkowski, P. Targowski, M. Szkulmowski, and A. Kowalczyk, “Three-dimensional in vivo imaging by spectral OCT,” Proc. SPIE 5316, 226–232 (2004).
[CrossRef]

Tao, Y. K.

Targowski, P.

B. J. Kaluzny, B. J. Kaluzy, J. J. Kałuzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

T. Bajraszewski, M. Wojtkowski, P. Targowski, M. Szkulmowski, and A. Kowalczyk, “Three-dimensional in vivo imaging by spectral OCT,” Proc. SPIE 5316, 226–232 (2004).
[CrossRef]

Tearney, G.

Tearney, G. J.

Unterhuber, A.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[CrossRef] [PubMed]

Villiger, M.

Wang, R. K.

White, B.

Wirtitsch, M.

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[CrossRef] [PubMed]

Wojtkowski, M.

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

B. J. Kaluzny, B. J. Kaluzy, J. J. Kałuzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

V. J. Srinivasan, M. Wojtkowski, J. G. Fujimoto, and J. S. Duker, “In vivo measurement of retinal physiology with high-speed ultrahigh-resolution optical coherence tomography,” Opt. Lett. 31(15), 2308–2310 (2006).
[CrossRef] [PubMed]

T. Bajraszewski, M. Wojtkowski, P. Targowski, M. Szkulmowski, and A. Kowalczyk, “Three-dimensional in vivo imaging by spectral OCT,” Proc. SPIE 5316, 226–232 (2004).
[CrossRef]

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. F. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27(16), 1415–1417 (2002).
[CrossRef]

R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C. K. Hitzenberger, M. Sticker, and A. F. Fercher, “Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography,” Opt. Lett. 25(11), 820–822 (2000).
[CrossRef]

Yamanari, M.

Yasuno, Y.

Yatagai, T.

Yun, S. H.

Zawadzki, R. J.

Arch. Ophthalmol. (1)

W. Drexler, H. Sattmann, B. Hermann, T. H. Ko, M. Stur, A. Unterhuber, C. Scholda, O. Findl, M. Wirtitsch, J. G. Fujimoto, and A. F. Fercher, “Enhanced visualization of macular pathology with the use of ultrahigh-resolution optical coherence tomography,” Arch. Ophthalmol. 121(5), 695–706 (2003).
[CrossRef] [PubMed]

Cornea (1)

B. J. Kaluzny, B. J. Kaluzy, J. J. Kałuzny, A. Szkulmowska, I. Gorczyńska, M. Szkulmowski, T. Bajraszewski, M. Wojtkowski, and P. Targowski, “Spectral optical coherence tomography: a novel technique for cornea imaging,” Cornea 25(8), 960–965 (2006).
[PubMed]

J. Biomed. Opt. (1)

M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, and A. F. Fercher, “In vivo human retinal imaging by Fourier domain optical coherence tomography,” J. Biomed. Opt. 7(3), 457–463 (2002).
[CrossRef] [PubMed]

Opt. Express (11)

R. A. Leitgeb, L. Schmetterer, W. Drexler, A. F. Fercher, R. J. Zawadzki, and T. Bajraszewski, “Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography,” Opt. Express 11(23), 3116–3121 (2003).
[CrossRef] [PubMed]

B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, and J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11(25), 3490–3497 (2003).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13(25), 10217–10229 (2005).
[CrossRef] [PubMed]

S. Makita, Y. Hong, M. Yamanari, T. Yatagai, and Y. Yasuno, “Optical coherence angiography,” Opt. Express 14(17), 7821–7840 (2006).
[CrossRef] [PubMed]

A. Bachmann, M. Villiger, C. Blatter, T. Lasser, and R. Leitgeb, “Resonant Doppler flow imaging and optical vivisection of retinal blood vessels,” Opt. Express 15, 408–422 (2007).
[CrossRef] [PubMed]

Y. Hong, S. Makita, M. Yamanari, M. Miura, S. Kim, T. Yatagai, and Y. Yasuno, “Three-dimensional visualization of choroidal vessels by using standard and ultra-high resolution scattering optical coherence angiography,” Opt. Express 15(12), 7538–7550 (2007).
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, “Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography,” Opt. Express 16(9), 6008–6025 (2008).
[CrossRef] [PubMed]

L. An and R. K. Wang, “In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography,” Opt. Express 16(15), 11438–11452 (2008).
[CrossRef] [PubMed]

Y. K. Tao, A. M. Davis, and J. A. Izatt, “Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform,” Opt. Express 16(16), 12350–12361 (2008).
[CrossRef] [PubMed]

T. Schmoll, C. Kolbitsch, and R. A. Leitgeb, “Ultra-high-speed volumetric tomography of human retinal blood flow,” Opt. Express 17(5), 4166–4176 (2009).
[CrossRef] [PubMed]

Y. K. Tao, K. M. Kennedy, and J. A. Izatt, “Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography,” Opt. Express 17(5), 4177–4188 (2009).
[CrossRef] [PubMed]

Opt. Lett. (4)

Proc. SPIE (1)

T. Bajraszewski, M. Wojtkowski, P. Targowski, M. Szkulmowski, and A. Kowalczyk, “Three-dimensional in vivo imaging by spectral OCT,” Proc. SPIE 5316, 226–232 (2004).
[CrossRef]

Supplementary Material (3)

» Media 1: AVI (4351 KB)     
» Media 2: AVI (4241 KB)     
» Media 3: AVI (4187 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Joint Spectral and Time domain OCT analysis of Intralipid flow in a glass capillary performed in one position of the probing beam; individual images are linked via one- (1D) and two-dimensional (2D) Fourier transformations (FT). (a) 2D interferogram consisting of M = 40 spectra recorded in time increments Δt = 40μs. (b) M = 40 reconstructions of the axial structure of the glass capillary (A-scans). (c) Retrieval of Doppler shift for each k. (d) Doppler shift distribution in depth. The flow is too high, axial velocity exceeds the velocity range and signal aliasing can be observed. (e) Single line in final structural tomogram - plot of maximal signal amplitude as a function of depth. (f) Velocity profile - plot of the points with maximal signal amplitude; displayed as intensity graph compose a single line in velocity map.

Fig. 2
Fig. 2

Pictorial representation of the bulk motion correction algorithm. (a) Raw velocity profile with bulk motion artifact, complex conjugation of the image is marked by the gray background and not considered. (b) Velocity profile plotted for signals that exceed a certain intensity threshold. (c) Histogram of velocity values corresponding to (b). (d) Corrected velocity profile.

Fig. 3
Fig. 3

Segmentation of blood vessels. (a) Standard structural image.(b) Velocity map used in further segmentation procedure. (c) Structural image of segmented vessels. Lower row – magnification 8.5 × .

Fig. 4
Fig. 4

(a) Experimental Spectral OCT system: PC polarization controller, DC dispersion compensator, NDF neutral density filter, XY galvo-scanners, CMOS line-scan camera. (b) Exemplary high quality and high resolution (2.3μm in tissue) cross-sectional image of human retina obtained with the described SOCT setup using high speed CMOS camera.

Fig. 5
Fig. 5

Scanning protocol (a) 3-D imaging - driving signals for X and Y scanners. (b) The procedure of generating 2-D velocity map from a single B-scan (c) Two types of sampling depending on the size of imaged area.

Fig. 11
Fig. 11

Comparison between imaging with two different velocity ranges (volume #3). (a) 3D velocity image overlaid onto structural OCT data with delimitation between sensory retina and choroid. (b, c) En-face velocity maps corresponding to retina layer for ± 15.2mm/s and ± 5.2mm/s, respectively. Green arrows indicate visible details, asterisks mark points of size measurement: capillary diameter is ~20 μm, bigger vessel is ~50 μm. (d, e) En-face velocity maps corresponding to choroid and sclera for ± 15.2mm/s and ± 5.2mm/s, respectively. Note, that color scale was adjusted separately for each velocity range.

Fig. 12
Fig. 12

Velocity maps obtained from 3-D images for three different velocity ranges. Note that color scale was adjusted separately for each velocity range. (a, d, g) Velocity maps of sensory retina. (b, e, h) Velocity maps of choroid and sclera. (c, f, i) Cross-sections of vessels with velocity profiles indicated by green arrows on velocity maps.

Fig. 6
Fig. 6

Regions of interest in STdOCT measurements of retinal and choroidal blood flow. (a) Fundus photo with marked areas of STdOCT scanning (white rectangles #1-4), red dashed rectangle corresponds to the area covered by angiographic image (right). (b) ICG angiography (TRC-50DX Type LA, Topcon).

Fig. 7
Fig. 7

Blood vessels in the region of optic nerve head (#1, 5mm × 5mm, exposure time 12 μs, maximum value of the axial velocity ± 15.2mm/s, measurement time <3s.). (a) Red-free fundus photography. (b) ICG angiography. (c) SOCT fundus view. (d) Reconstructed 3D velocity image overlaid onto structural SOCT data (Media 1). (e) Velocity en-face map created from 3D STdOCT data. (f) En-face view of segmented vessels. None of presented images require filtering, smoothing or manual segmentation.

Fig. 9
Fig. 9

Different types of discontinuities of recovered blood vessels (details from Fig. 7(e)). (a) Discontinuity due to low sampling in y-direction (upper part of Fig. 7(e)). (b) Lack of signal due to vessel reorientation (in the middle of Fig. 7(e)). (c) Discontinuity due to perpendicular direction of the vessel in respect to the direction of sampling beam (bottom left hand corner of Fig. 7(e)). (d) Discontinuity due to a high value of the blood flow velocity exceeding the measurement range (top right hand corner of Fig. 7(e)).

Fig. 8
Fig. 8

Velocity distribution within vessels. (a) 3D en-face and 2D cross-sectional STdOCT velocity maps (right panel); 2D map is extracted from 3D image with the exact location marked at the en-face map (left panel). (b) Velocity profiles in both lateral ( x ) and axial (z) directions for vessels visible at presented cross-sectional velocity map.

Fig. 10
Fig. 10

Comparison between densely-sampled volume #2 and sparsely-sampled volume #1, 3mm × 2mm, exposure time 12 μs, axial velocity range ± 15.2mm/s. (a) Movie of 3D reconstructed velocity image #2 overlaid onto structural OCT data (Media 2). (b) En-face velocity map obtained from 3D image #2. (c) En-face view of 3D image of segmented vessels #2. (d) En-face velocity map obtained from cropped 3D image #1. (e) En-face view of segmented vessels from cropped volume #1. None of the presented images require filtering, smoothing or manual segmentation.

Fig. 13
Fig. 13

Reconstructed 3D velocity image at the region of fovea overlaid onto structural OCT data (Media 3); volume #4, 3mm × 2mm, exposure time 12 μs, axial velocity range ± 15.2 mm/s, measurement time < 3 s.

Fig. 14
Fig. 14

Three-dimensional structural OCT image (volume #3) with indicated three main layers: retina, choroid and sclera and corresponding velocity maps obtained by STdOCT (a) Delimitation between sensory retina, choroid and sclera. (b-d) En-face velocity maps corresponding to retinal, choroidal and scleral layer, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

v±max=±π2kΔt .

Metrics