Abstract

We propose a simple structure for manipulating resonant conditions in random structures, which is composed of a waveguide structure as a defect region embedded in a random structure. Using the two-dimensional finite-difference time-domain method, we examine the resonant properties of localized modes bound in the waveguide. From the results, we confirm that long-lived modes are strongly confined in the waveguide only when the resonant frequency matches the frequency windows in the transmitted intensity spectrum of the surrounding random structure.

© 2009 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Numerical analysis of resonant and lasing properties at a defect region within a random structure

Hideki Fujiwara, Yosuke Hamabata, and Keiji Sasaki
Opt. Express 17(5) 3970-3977 (2009)

Modes of random lasers

J. Andreasen, A. A. Asatryan, L. C. Botten, M. A. Byrne, H. Cao, L. Ge, L. Labonté, P. Sebbah, A. D. Stone, H. E. Türeci, and C. Vanneste
Adv. Opt. Photon. 3(1) 88-127 (2011)

Route to strong localization of light: the role of disorder

Diego Molinari and Andrea Fratalocchi
Opt. Express 20(16) 18156-18164 (2012)

References

  • View by:
  • |
  • |
  • |

  1. C. Gouedard, D. Husson, C. Sauteret, F. Auzel, and A. Migus, “Generation of spatially incoherent short pulses in laser-pumped neodymium stoichiometric crystals and powders,” J. Opt. Soc. Am. B 10(12), 2358–2363 (1993).
    [Crossref]
  2. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
    [Crossref]
  3. M. A. Noginov, N. E. Noginova, H. J. Caulfield, P. Venkateswarlu, T. Thompson, M. Mahdi, and V. Ostroumov, “Short-pulsed stimulated emission in the powders of NdAl3(BO3)4, NdSc3(BO3)4, and Nd:Sr5(PO4)3F laser crystals,” J. Opt. Soc. Am. B 13(9), 2024–2033 (1996).
    [Crossref]
  4. D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
    [Crossref]
  5. A. Kurita, Y. Kanematsu, M. Watanabe, K. Hirata, and T. Kushida, “Wavelength- and Angle-Selective Optical Memory Effect by Interference of Multiple-Scattered Light,” Phys. Rev. Lett. 83(8), 1582–1585 (1999).
    [Crossref]
  6. H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001).
    [Crossref] [PubMed]
  7. S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89(18), 186801 (2002).
    [Crossref] [PubMed]
  8. R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
    [Crossref]
  9. G. Zacharakis, N. A. Papadogiannis, and T. G. Papazoglou, “Random lasing following two-photon excitation of highly scattering gain media,” Appl. Phys. Lett. 81(14), 2511–2513 (2002).
    [Crossref]
  10. H. Fujiwara and K. Sasaki, “Observation of upconversion lasing within a thulium-ion-doped glass powder film containing titanium dioxide particles,” Jpn. J. Appl. Phys. 43(No. 10B), L1337–L1339 (2004).
    [Crossref]
  11. H. Fujiwara and K. Sasaki, “Observation of optical bistability in a ZnO powder random medium,” Appl. Phys. Lett. 89(7), 071115 (2006).
    [Crossref]
  12. G. van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett. 24(5), 306–308 (1999).
    [Crossref]
  13. G. van Soest and A. Lagendijk, “β factor in a random laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2B), 047601 (2002).
    [Crossref] [PubMed]
  14. H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
    [Crossref]
  15. H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84(24), 5584–5587 (2000).
    [Crossref] [PubMed]
  16. Q. Song, L. Wang, S. Xiao, X. Zhou, L. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
    [Crossref]
  17. H. Watanabe, Y. Oki, M. Maeda, and T. Omatsu, “Waveguide dye laser including a SiO2 nanoparticle-dispersed random scattering active layer,” Appl. Phys. Lett. 86(15), 151123 (2005).
    [Crossref]
  18. C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
    [Crossref]
  19. S. Furumi, H. Fudouzi, H. T. Miyazaki, and Y. Sakka, “Flexible polymer colloidal-crystal random lasers with a light-emitting planar defect,” Adv. Mater. 19(16), 2067–2072 (2007).
    [Crossref]
  20. D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
    [Crossref] [PubMed]
  21. S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2(7), 429–432 (2008).
    [Crossref]
  22. C. Vanneste and P. Sebbah, “Localized modes in random arrays of cylinders,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026612 (2005).
    [Crossref] [PubMed]
  23. P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002).
    [Crossref]
  24. J. Liu and H. Liu, “Theoretical investigation on the threshold properties of localized modes in two-dimensional random media,” J. Mod. Opt. 53(10), 1429–1439 (2006).
    [Crossref]
  25. H. Fujiwara, Y. Hamabata, and K. Sasaki, “Numerical analysis of resonant and lasing properties at a defect region within a random structure,” Opt. Express 17(5), 3970–3977 (2009).
    [Crossref] [PubMed]
  26. H. Miyazaki, M. Hase, H. T. Miyazaki, Y. Kurokawa, and N. Shinya, “Photonic material for designing arbitrarily shaped waveguides in two dimensions,” Phys. Rev. B 67(23), 235109 (2003).
    [Crossref]
  27. C. Rockstuhl, U. Peschel, and F. Lederer, “Correlation between single-cylinder properties and bandgap formation in photonic structures,” Opt. Lett. 31(11), 1741–1743 (2006).
    [Crossref] [PubMed]
  28. J. Topolancik, F. Vollmer, and B. Llic, “Random high-Q cavities in disordered photonic crystal waveguides,” Appl. Phys. Lett. 91(20), 201102 (2007).
    [Crossref]
  29. J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
    [Crossref]
  30. M. Agio and C. M. Soukoulis, “Ministop bands in single-defect photonic crystal waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5 Pt 2), 055603 (2001).
    [Crossref] [PubMed]

2009 (1)

2008 (1)

S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2(7), 429–432 (2008).
[Crossref]

2007 (3)

S. Furumi, H. Fudouzi, H. T. Miyazaki, and Y. Sakka, “Flexible polymer colloidal-crystal random lasers with a light-emitting planar defect,” Adv. Mater. 19(16), 2067–2072 (2007).
[Crossref]

J. Topolancik, F. Vollmer, and B. Llic, “Random high-Q cavities in disordered photonic crystal waveguides,” Appl. Phys. Lett. 91(20), 201102 (2007).
[Crossref]

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
[Crossref]

2006 (3)

J. Liu and H. Liu, “Theoretical investigation on the threshold properties of localized modes in two-dimensional random media,” J. Mod. Opt. 53(10), 1429–1439 (2006).
[Crossref]

C. Rockstuhl, U. Peschel, and F. Lederer, “Correlation between single-cylinder properties and bandgap formation in photonic structures,” Opt. Lett. 31(11), 1741–1743 (2006).
[Crossref] [PubMed]

H. Fujiwara and K. Sasaki, “Observation of optical bistability in a ZnO powder random medium,” Appl. Phys. Lett. 89(7), 071115 (2006).
[Crossref]

2005 (4)

Q. Song, L. Wang, S. Xiao, X. Zhou, L. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
[Crossref]

H. Watanabe, Y. Oki, M. Maeda, and T. Omatsu, “Waveguide dye laser including a SiO2 nanoparticle-dispersed random scattering active layer,” Appl. Phys. Lett. 86(15), 151123 (2005).
[Crossref]

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

C. Vanneste and P. Sebbah, “Localized modes in random arrays of cylinders,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026612 (2005).
[Crossref] [PubMed]

2004 (2)

H. Fujiwara and K. Sasaki, “Observation of upconversion lasing within a thulium-ion-doped glass powder film containing titanium dioxide particles,” Jpn. J. Appl. Phys. 43(No. 10B), L1337–L1339 (2004).
[Crossref]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

2003 (1)

H. Miyazaki, M. Hase, H. T. Miyazaki, Y. Kurokawa, and N. Shinya, “Photonic material for designing arbitrarily shaped waveguides in two dimensions,” Phys. Rev. B 67(23), 235109 (2003).
[Crossref]

2002 (4)

P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002).
[Crossref]

G. Zacharakis, N. A. Papadogiannis, and T. G. Papazoglou, “Random lasing following two-photon excitation of highly scattering gain media,” Appl. Phys. Lett. 81(14), 2511–2513 (2002).
[Crossref]

S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89(18), 186801 (2002).
[Crossref] [PubMed]

G. van Soest and A. Lagendijk, “β factor in a random laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2B), 047601 (2002).
[Crossref] [PubMed]

2001 (3)

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001).
[Crossref] [PubMed]

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

M. Agio and C. M. Soukoulis, “Ministop bands in single-defect photonic crystal waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5 Pt 2), 055603 (2001).
[Crossref] [PubMed]

2000 (2)

H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84(24), 5584–5587 (2000).
[Crossref] [PubMed]

1999 (2)

G. van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett. 24(5), 306–308 (1999).
[Crossref]

A. Kurita, Y. Kanematsu, M. Watanabe, K. Hirata, and T. Kushida, “Wavelength- and Angle-Selective Optical Memory Effect by Interference of Multiple-Scattered Light,” Phys. Rev. Lett. 83(8), 1582–1585 (1999).
[Crossref]

1997 (1)

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

1996 (1)

1994 (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

1993 (1)

Agio, M.

M. Agio and C. M. Soukoulis, “Ministop bands in single-defect photonic crystal waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5 Pt 2), 055603 (2001).
[Crossref] [PubMed]

Auzel, F.

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Bartolini, P.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

Blanco, A.

S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2(7), 429–432 (2008).
[Crossref]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89(18), 186801 (2002).
[Crossref] [PubMed]

Cao, C. Q.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001).
[Crossref] [PubMed]

Cao, H.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001).
[Crossref] [PubMed]

H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84(24), 5584–5587 (2000).
[Crossref] [PubMed]

Caulfield, H. J.

Cavalieri, S.

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

Chang, R. P. H.

H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84(24), 5584–5587 (2000).
[Crossref] [PubMed]

Chang, S.-H.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84(24), 5584–5587 (2000).
[Crossref] [PubMed]

Chen, N. S.

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

Fudouzi, H.

S. Furumi, H. Fudouzi, H. T. Miyazaki, and Y. Sakka, “Flexible polymer colloidal-crystal random lasers with a light-emitting planar defect,” Adv. Mater. 19(16), 2067–2072 (2007).
[Crossref]

Fujiwara, H.

H. Fujiwara, Y. Hamabata, and K. Sasaki, “Numerical analysis of resonant and lasing properties at a defect region within a random structure,” Opt. Express 17(5), 3970–3977 (2009).
[Crossref] [PubMed]

H. Fujiwara and K. Sasaki, “Observation of optical bistability in a ZnO powder random medium,” Appl. Phys. Lett. 89(7), 071115 (2006).
[Crossref]

H. Fujiwara and K. Sasaki, “Observation of upconversion lasing within a thulium-ion-doped glass powder film containing titanium dioxide particles,” Jpn. J. Appl. Phys. 43(No. 10B), L1337–L1339 (2004).
[Crossref]

Furumi, S.

S. Furumi, H. Fudouzi, H. T. Miyazaki, and Y. Sakka, “Flexible polymer colloidal-crystal random lasers with a light-emitting planar defect,” Adv. Mater. 19(16), 2067–2072 (2007).
[Crossref]

Garcia, P. D.

S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2(7), 429–432 (2008).
[Crossref]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Gottardo, S.

S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2(7), 429–432 (2008).
[Crossref]

Gouedard, C.

Hamabata, Y.

Hase, M.

H. Miyazaki, M. Hase, H. T. Miyazaki, Y. Kurokawa, and N. Shinya, “Photonic material for designing arbitrarily shaped waveguides in two dimensions,” Phys. Rev. B 67(23), 235109 (2003).
[Crossref]

Hirata, K.

A. Kurita, Y. Kanematsu, M. Watanabe, K. Hirata, and T. Kushida, “Wavelength- and Angle-Selective Optical Memory Effect by Interference of Multiple-Scattered Light,” Phys. Rev. Lett. 83(8), 1582–1585 (1999).
[Crossref]

Hng, H. H.

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

Ho, S. T.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84(24), 5584–5587 (2000).
[Crossref] [PubMed]

Husson, D.

Ilic, B.

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
[Crossref]

Kanematsu, Y.

A. Kurita, Y. Kanematsu, M. Watanabe, K. Hirata, and T. Kushida, “Wavelength- and Angle-Selective Optical Memory Effect by Interference of Multiple-Scattered Light,” Phys. Rev. Lett. 83(8), 1582–1585 (1999).
[Crossref]

Kumar, P.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001).
[Crossref] [PubMed]

Kurita, A.

A. Kurita, Y. Kanematsu, M. Watanabe, K. Hirata, and T. Kushida, “Wavelength- and Angle-Selective Optical Memory Effect by Interference of Multiple-Scattered Light,” Phys. Rev. Lett. 83(8), 1582–1585 (1999).
[Crossref]

Kurokawa, Y.

H. Miyazaki, M. Hase, H. T. Miyazaki, Y. Kurokawa, and N. Shinya, “Photonic material for designing arbitrarily shaped waveguides in two dimensions,” Phys. Rev. B 67(23), 235109 (2003).
[Crossref]

Kushida, T.

A. Kurita, Y. Kanematsu, M. Watanabe, K. Hirata, and T. Kushida, “Wavelength- and Angle-Selective Optical Memory Effect by Interference of Multiple-Scattered Light,” Phys. Rev. Lett. 83(8), 1582–1585 (1999).
[Crossref]

Lagendijk, A.

G. van Soest and A. Lagendijk, “β factor in a random laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2B), 047601 (2002).
[Crossref] [PubMed]

G. van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett. 24(5), 306–308 (1999).
[Crossref]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

Lau, S. P.

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Lederer, F.

Leong, E. S. P.

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

Leosson, K.

S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89(18), 186801 (2002).
[Crossref] [PubMed]

Ling, Y.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001).
[Crossref] [PubMed]

Liu, H.

J. Liu and H. Liu, “Theoretical investigation on the threshold properties of localized modes in two-dimensional random media,” J. Mod. Opt. 53(10), 1429–1439 (2006).
[Crossref]

Liu, J.

J. Liu and H. Liu, “Theoretical investigation on the threshold properties of localized modes in two-dimensional random media,” J. Mod. Opt. 53(10), 1429–1439 (2006).
[Crossref]

Liu, L.

Q. Song, L. Wang, S. Xiao, X. Zhou, L. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
[Crossref]

Liu, X.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84(24), 5584–5587 (2000).
[Crossref] [PubMed]

Llic, B.

J. Topolancik, F. Vollmer, and B. Llic, “Random high-Q cavities in disordered photonic crystal waveguides,” Appl. Phys. Lett. 91(20), 201102 (2007).
[Crossref]

Lopez, C.

S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2(7), 429–432 (2008).
[Crossref]

Maeda, M.

H. Watanabe, Y. Oki, M. Maeda, and T. Omatsu, “Waveguide dye laser including a SiO2 nanoparticle-dispersed random scattering active layer,” Appl. Phys. Lett. 86(15), 151123 (2005).
[Crossref]

Mahdi, M.

Migus, A.

Miyazaki, H.

H. Miyazaki, M. Hase, H. T. Miyazaki, Y. Kurokawa, and N. Shinya, “Photonic material for designing arbitrarily shaped waveguides in two dimensions,” Phys. Rev. B 67(23), 235109 (2003).
[Crossref]

Miyazaki, H. T.

S. Furumi, H. Fudouzi, H. T. Miyazaki, and Y. Sakka, “Flexible polymer colloidal-crystal random lasers with a light-emitting planar defect,” Adv. Mater. 19(16), 2067–2072 (2007).
[Crossref]

H. Miyazaki, M. Hase, H. T. Miyazaki, Y. Kurokawa, and N. Shinya, “Photonic material for designing arbitrarily shaped waveguides in two dimensions,” Phys. Rev. B 67(23), 235109 (2003).
[Crossref]

Noginov, M. A.

Noginova, N. E.

Oki, Y.

H. Watanabe, Y. Oki, M. Maeda, and T. Omatsu, “Waveguide dye laser including a SiO2 nanoparticle-dispersed random scattering active layer,” Appl. Phys. Lett. 86(15), 151123 (2005).
[Crossref]

Omatsu, T.

H. Watanabe, Y. Oki, M. Maeda, and T. Omatsu, “Waveguide dye laser including a SiO2 nanoparticle-dispersed random scattering active layer,” Appl. Phys. Lett. 86(15), 151123 (2005).
[Crossref]

Ostroumov, V.

Papadogiannis, N. A.

G. Zacharakis, N. A. Papadogiannis, and T. G. Papazoglou, “Random lasing following two-photon excitation of highly scattering gain media,” Appl. Phys. Lett. 81(14), 2511–2513 (2002).
[Crossref]

Papazoglou, T. G.

G. Zacharakis, N. A. Papadogiannis, and T. G. Papazoglou, “Random lasing following two-photon excitation of highly scattering gain media,” Appl. Phys. Lett. 81(14), 2511–2513 (2002).
[Crossref]

Peschel, U.

Polson, R. C.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

Righini, R.

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

Rockstuhl, C.

Sakka, Y.

S. Furumi, H. Fudouzi, H. T. Miyazaki, and Y. Sakka, “Flexible polymer colloidal-crystal random lasers with a light-emitting planar defect,” Adv. Mater. 19(16), 2067–2072 (2007).
[Crossref]

Sapienza, R.

S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2(7), 429–432 (2008).
[Crossref]

Sasaki, K.

H. Fujiwara, Y. Hamabata, and K. Sasaki, “Numerical analysis of resonant and lasing properties at a defect region within a random structure,” Opt. Express 17(5), 3970–3977 (2009).
[Crossref] [PubMed]

H. Fujiwara and K. Sasaki, “Observation of optical bistability in a ZnO powder random medium,” Appl. Phys. Lett. 89(7), 071115 (2006).
[Crossref]

H. Fujiwara and K. Sasaki, “Observation of upconversion lasing within a thulium-ion-doped glass powder film containing titanium dioxide particles,” Jpn. J. Appl. Phys. 43(No. 10B), L1337–L1339 (2004).
[Crossref]

Sauteret, C.

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

Sebbah, P.

C. Vanneste and P. Sebbah, “Localized modes in random arrays of cylinders,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026612 (2005).
[Crossref] [PubMed]

P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002).
[Crossref]

Seelig, E. W.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84(24), 5584–5587 (2000).
[Crossref] [PubMed]

Seeling, E. W.

H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

Shinya, N.

H. Miyazaki, M. Hase, H. T. Miyazaki, Y. Kurokawa, and N. Shinya, “Photonic material for designing arbitrarily shaped waveguides in two dimensions,” Phys. Rev. B 67(23), 235109 (2003).
[Crossref]

Song, Q.

Q. Song, L. Wang, S. Xiao, X. Zhou, L. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
[Crossref]

Soukoulis, C. M.

M. Agio and C. M. Soukoulis, “Ministop bands in single-defect photonic crystal waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5 Pt 2), 055603 (2001).
[Crossref] [PubMed]

Thompson, T.

Tomita, M.

Topolancik, J.

J. Topolancik, F. Vollmer, and B. Llic, “Random high-Q cavities in disordered photonic crystal waveguides,” Appl. Phys. Lett. 91(20), 201102 (2007).
[Crossref]

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
[Crossref]

van Soest, G.

G. van Soest and A. Lagendijk, “β factor in a random laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2B), 047601 (2002).
[Crossref] [PubMed]

G. van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett. 24(5), 306–308 (1999).
[Crossref]

Vanneste, C.

C. Vanneste and P. Sebbah, “Localized modes in random arrays of cylinders,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026612 (2005).
[Crossref] [PubMed]

P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002).
[Crossref]

Vardeny, Z. V.

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

Venkateswarlu, P.

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89(18), 186801 (2002).
[Crossref] [PubMed]

Vollmer, F.

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
[Crossref]

J. Topolancik, F. Vollmer, and B. Llic, “Random high-Q cavities in disordered photonic crystal waveguides,” Appl. Phys. Lett. 91(20), 201102 (2007).
[Crossref]

Wang, L.

Q. Song, L. Wang, S. Xiao, X. Zhou, L. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
[Crossref]

Watanabe, H.

H. Watanabe, Y. Oki, M. Maeda, and T. Omatsu, “Waveguide dye laser including a SiO2 nanoparticle-dispersed random scattering active layer,” Appl. Phys. Lett. 86(15), 151123 (2005).
[Crossref]

Watanabe, M.

A. Kurita, Y. Kanematsu, M. Watanabe, K. Hirata, and T. Kushida, “Wavelength- and Angle-Selective Optical Memory Effect by Interference of Multiple-Scattered Light,” Phys. Rev. Lett. 83(8), 1582–1585 (1999).
[Crossref]

Wiersma, D. S.

S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2(7), 429–432 (2008).
[Crossref]

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

Xiao, S.

Q. Song, L. Wang, S. Xiao, X. Zhou, L. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
[Crossref]

Xu, J. Y.

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001).
[Crossref] [PubMed]

H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84(24), 5584–5587 (2000).
[Crossref] [PubMed]

Xu, L.

Q. Song, L. Wang, S. Xiao, X. Zhou, L. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
[Crossref]

Yang, H. Y.

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

Yu, S. F.

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

Yuen, C.

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

Zacharakis, G.

G. Zacharakis, N. A. Papadogiannis, and T. G. Papazoglou, “Random lasing following two-photon excitation of highly scattering gain media,” Appl. Phys. Lett. 81(14), 2511–2513 (2002).
[Crossref]

Zhang, D. Z.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84(24), 5584–5587 (2000).
[Crossref] [PubMed]

Zhou, X.

Q. Song, L. Wang, S. Xiao, X. Zhou, L. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
[Crossref]

Adv. Mater. (1)

S. Furumi, H. Fudouzi, H. T. Miyazaki, and Y. Sakka, “Flexible polymer colloidal-crystal random lasers with a light-emitting planar defect,” Adv. Mater. 19(16), 2067–2072 (2007).
[Crossref]

Appl. Phys. Lett. (7)

H. Watanabe, Y. Oki, M. Maeda, and T. Omatsu, “Waveguide dye laser including a SiO2 nanoparticle-dispersed random scattering active layer,” Appl. Phys. Lett. 86(15), 151123 (2005).
[Crossref]

C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, “Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer,” Appl. Phys. Lett. 86(3), 031112 (2005).
[Crossref]

H. Fujiwara and K. Sasaki, “Observation of optical bistability in a ZnO powder random medium,” Appl. Phys. Lett. 89(7), 071115 (2006).
[Crossref]

H. Cao, J. Y. Xu, E. W. Seeling, and R. P. H. Chang, “Microlaser made of disordered media,” Appl. Phys. Lett. 76(21), 2997–2999 (2000).
[Crossref]

R. C. Polson and Z. V. Vardeny, “Random lasing in human tissues,” Appl. Phys. Lett. 85(7), 1289–1291 (2004).
[Crossref]

G. Zacharakis, N. A. Papadogiannis, and T. G. Papazoglou, “Random lasing following two-photon excitation of highly scattering gain media,” Appl. Phys. Lett. 81(14), 2511–2513 (2002).
[Crossref]

J. Topolancik, F. Vollmer, and B. Llic, “Random high-Q cavities in disordered photonic crystal waveguides,” Appl. Phys. Lett. 91(20), 201102 (2007).
[Crossref]

J. Mod. Opt. (1)

J. Liu and H. Liu, “Theoretical investigation on the threshold properties of localized modes in two-dimensional random media,” J. Mod. Opt. 53(10), 1429–1439 (2006).
[Crossref]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

H. Fujiwara and K. Sasaki, “Observation of upconversion lasing within a thulium-ion-doped glass powder film containing titanium dioxide particles,” Jpn. J. Appl. Phys. 43(No. 10B), L1337–L1339 (2004).
[Crossref]

Nat. Photonics (1)

S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2(7), 429–432 (2008).
[Crossref]

Nature (3)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368(6470), 436–438 (1994).
[Crossref]

D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, “Localization of light in a disordered medium,” Nature 390(6661), 671–673 (1997).
[Crossref]

D. S. Wiersma and S. Cavalieri, “Light emission: A temperature-tunable random laser,” Nature 414(6865), 708–709 (2001).
[Crossref] [PubMed]

Opt. Express (1)

Opt. Lett. (2)

Phys. Rev. B (3)

H. Miyazaki, M. Hase, H. T. Miyazaki, Y. Kurokawa, and N. Shinya, “Photonic material for designing arbitrarily shaped waveguides in two dimensions,” Phys. Rev. B 67(23), 235109 (2003).
[Crossref]

Q. Song, L. Wang, S. Xiao, X. Zhou, L. Liu, and L. Xu, “Random laser emission from a surface-corrugated waveguide,” Phys. Rev. B 72(3), 035424 (2005).
[Crossref]

P. Sebbah and C. Vanneste, “Random laser in the localized regime,” Phys. Rev. B 66(14), 144202 (2002).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (3)

C. Vanneste and P. Sebbah, “Localized modes in random arrays of cylinders,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(2), 026612 (2005).
[Crossref] [PubMed]

M. Agio and C. M. Soukoulis, “Ministop bands in single-defect photonic crystal waveguides,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 64(5 Pt 2), 055603 (2001).
[Crossref] [PubMed]

G. van Soest and A. Lagendijk, “β factor in a random laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(44 Pt 2B), 047601 (2002).
[Crossref] [PubMed]

Phys. Rev. Lett. (5)

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84(24), 5584–5587 (2000).
[Crossref] [PubMed]

A. Kurita, Y. Kanematsu, M. Watanabe, K. Hirata, and T. Kushida, “Wavelength- and Angle-Selective Optical Memory Effect by Interference of Multiple-Scattered Light,” Phys. Rev. Lett. 83(8), 1582–1585 (1999).
[Crossref]

H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random lasers with resonant feedback,” Phys. Rev. Lett. 86(20), 4524–4527 (2001).
[Crossref] [PubMed]

S. I. Bozhevolnyi, V. S. Volkov, and K. Leosson, “Localization and waveguiding of surface plasmon polaritons in random nanostructures,” Phys. Rev. Lett. 89(18), 186801 (2002).
[Crossref] [PubMed]

J. Topolancik, B. Ilic, and F. Vollmer, “Experimental observation of strong photon localization in disordered photonic crystal waveguides,” Phys. Rev. Lett. 99(25), 253901 (2007).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Typical spatial distribution of scatterers (solid circles) with a waveguide (gray line). A waveguide (width 900 nm, length 52.5 µm, refractive index 1.5) embedded in the center of randomly distributed dielectric circular scatterers (diameter 400 nm, refractive index 2.6, surface filling factor 50%). The dispersion area of scatterers was 5.9 × 62.5 µm2. The surrounding medium was assumed to be air (refractive index 1.0). The size of the entire calculation area was set to 30 × 100 µm2.

Fig. 2
Fig. 2

Curves (a) and (b) indicate the resonant spectrum of the numerical model in Fig. 1 and a transmitted intensity spectrum of the surrounding random structure without a waveguide structure. A solid circle with error bar exhibits the average resonant frequency calculated from ten different distributions of scatterers. Curve (c) shows the reflected intensity spectrum from a waveguide structure without surrounding scatterers.

Fig. 3
Fig. 3

Intensity distributions at (a) on- and (b) off-resonant frequencies (281 and 325 THz, respectively). The distributions were normalized by individual maximum values and the maximum intensity of the image at the off-resonant frequency was about 103 times smaller than that at the on-resonant frequency.

Metrics