Abstract

Standing wave optical trapping offers many useful advantages in comparison to single beam trapping, especially for submicrometer size particles. It provides axial force stronger by several orders of magnitude, much higher axial trap stiffness, and spatial confinement of particles with higher refractive index. Mainly spherical particles are nowadays considered theoretically and trapped experimentally. In this paper we consider prolate objects of cylindrical symmetry with radius periodically modulated along the axial direction and we present a theoretical study of optimized objects shapes resulting in up to tenfold enhancement of the axial optical force in comparison with the original unmodulated object shape. We obtain analytical formulas for the axial optical force acting on low refractive index objects where the light scattering by the object is negligible. Numerical results based on the coupled dipole method are presented for objects with higher refractive indices and they support the previous simplified analytical conclusions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
    [CrossRef]
  2. K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 35, 42-55 (2008).
    [CrossRef]
  3. A. Jonáš and P. Zemánek, "Light at work: The use of optical forces for particle manipulation, sorting, and analysis." Electophoresis 29, 4813-4851 (2008).
    [CrossRef]
  4. J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
    [CrossRef]
  5. K. F. Ren, G. Gréhan, and G. Gouesbet, "Prediction of reverse radiation pressure by generalized Lorenz-Mie theory," Appl. Opt 35, 2702-2710 (1996).
    [CrossRef] [PubMed]
  6. A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, "Theory of trapping forces in optical tweezers," Proc.R. Soc. Lond. A 459, 3021-3041 (2003).
    [CrossRef]
  7. A. A. R. Neves, A. Fontes, L. de Y. Pozzo, A. A. de Thomaz, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, "Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric," Opt. Express 14, 13101-13106 (2006).
    [CrossRef] [PubMed]
  8. Y.-L. Xu, "Electromagnetic scattering by an aggregate of spheres," Appl. Opt. 34, 4573-4588 (1995).
    [CrossRef] [PubMed]
  9. J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, "Photonic clusters formed by dielectric microspheres: Numerical simulations," Phys. Rev. B 72, 085130 (2005).
    [CrossRef]
  10. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A.M. Bránczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
    [CrossRef]
  11. F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, "Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam," Phys. Rev. E 75, 026613 (2007).
    [CrossRef]
  12. T. M. Grzegorczyk, B. A. Kemp, and J. A. Kong, "Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field," J. Opt. Soc. Am. A 23, 2324-2330 (2006).
    [CrossRef]
  13. P. C. Chaumet and C. Billaudeau, "Coupled dipole method to compute optical torque: Application to a micropropeller," J. Appl. Phys. 1011, 023106 (2007).
    [CrossRef]
  14. A. G. Hoekstra, M. Frijlink, L. B. F. M. Waters, and P. M. A. Sloot, "Radiation forces in the discrete-dipole approximation," J. Opt. Soc. Am. A 18, 1944-1953 (2001).
    [CrossRef]
  15. D. A. White, "Vector finite element modeling of optical tweezers," Comp. Phys. Commun. 128, 558-564 (2000).
    [CrossRef]
  16. R. C. Gauthier, "Computation of the optical trapping force using an FDTD based technique," Opt. Express 13, 3707-3718 (2005).
    [CrossRef] [PubMed]
  17. A. R. Zakharian, M. Mansuripur, and J. V. Moloney, "Radiation pressure and the distribution of electromagnetic force in dielctric media," Opt. Express 13, 2321-2336 (2005).
    [CrossRef] [PubMed]
  18. W. L. Collet, C. A. Ventrice, and S. M. Mahajan, "Electromagnetic wave technique to determine radiation torque on micromachines driven by light," Appl. Phys. Lett. 82, 2730-2732 (2003).
    [CrossRef]
  19. D. C. Benito, S. H. Simpson, and S. Hanna, "FDTD simulations of forces on particles during holographic assembly," Opt. Express 16, 2942-2957 (2008).
    [CrossRef] [PubMed]
  20. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  21. A. Constable and J. Kim, "Demonstration of a fiber-optical light-force trap," Opt. Lett. 18, 1867- 1869 (1993).
    [CrossRef] [PubMed]
  22. S. D. Collins, R. J. Baskin, and D. G. Howitt, "Microinstrument gradient-force optical trap," Appl. Opt. 38, 6068-6074 (1999).
    [CrossRef]
  23. J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451-5154 (2000).
    [CrossRef] [PubMed]
  24. J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005).
    [CrossRef] [PubMed]
  25. S. J. Cran-McGreehin, T. F. Krauss, and K. Dholakia, "Integrated monolithic optical manipulation," Lab Chip 6, 1122-1124 (2006).
    [CrossRef] [PubMed]
  26. P. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman microspectroscopy of single cells," Opt. Express 14, 5779-5791 (2006).
    [CrossRef] [PubMed]
  27. D. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, "Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions," Rev. Sci. Instrum. 75(9), 2960-2970 (2004).
    [CrossRef]
  28. P. Rodrigo, L. Gammelgaard, P. Boggild, I. Perch-Nielsen, and J. Glückstad, "Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps," Opt. Express 13, 6899-6904 (2005).
    [CrossRef] [PubMed]
  29. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, "One-Dimensional Optically Bound Arrays of Microscopic Particles," Phys. Rev. Lett. 89, 283901 (2002).
    [CrossRef]
  30. V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Long-range onedimensional longitudinal optical binding," Phys. Rev. Lett. 101, 143601 (2008).
    [CrossRef] [PubMed]
  31. P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, "Optical trapping of Rayleigh particles using a Gaussian standing wave," Opt. Commun. 151, 273-285 (1998).
    [CrossRef]
  32. P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, "Optical trapping of nanoparticles and microparticles using Gaussian standing wave." Opt. Lett. 24, 1448-1450 (1999).
    [CrossRef]
  33. P. Zemánek, A. Jonáš, and M. Liška, "Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave," J. Opt. Soc. Am. A 19, 1025-1034 (2002).
    [CrossRef]
  34. P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, "Theoretical comparison of optical traps created by standing wave and single beam," Opt. Commun. 220, 401-412 (2003).
    [CrossRef]
  35. T. Čižmár, M. Šiler, and P. Zemánek, "An optical nanotrap array movable over a milimetre range," Appl. Phys. B 84, 197-203 (2006).
    [CrossRef]
  36. T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, "Optical conveyor belt for delivery of submicron objects," Appl. Phys. Lett. 86, 174101 (2005).
    [CrossRef]
  37. T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, "Sub-micron particle organization by self-imaging of non-diffracting beams," New. J. Phys. 8, 43 (2006).
    [CrossRef]
  38. D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fibre trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008).
    [CrossRef]
  39. T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
    [CrossRef]
  40. M. Šiler, T. Čižmár, M. Šerý and P. Zemánek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
    [CrossRef]
  41. M. Šiler, T. ČižmárA. Jonáš and P. Zemánek, "Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination," New. J. Phys. 10, 113010 (2008).
    [CrossRef]
  42. J. Ježek, T. Čižmár, V. Neděla, and P. Zemánek, "Formation of long and thin polymer fiber using nondiffracting beam," Opt. Express 14, 8506-8515 (2006).
    [CrossRef] [PubMed]
  43. L. Kelemen, S. Valkai, and P. Ormos, "Integrated Optical Rotor," Appl. Opt. 45, 2777-2779 (2006).
    [CrossRef] [PubMed]
  44. L. Kelemen, S. Valkai, and P. Ormos, "Parallel photopolymerisation with complex light patterns generated by diffractive optical elements," Opt. Express 15(22), 14488-14497 (2007).
    [CrossRef]
  45. S. Maruo, O. Nakamura, and S. Kawata, "Three-dimensional microfabrication with two-photon-absorbed photopolymerization," Opt. Lett. 22, 132-134 (1997).
    [CrossRef] [PubMed]
  46. A. Simon and M. Durrieu, "Strategies and results of atomic force microscopy in the study of cellular adhesion," Micron 37, 1-13 (2006).
    [CrossRef]
  47. A. Alessandrini and P. Facci, "AFM: a versatile tool in biophysics," Meas. Sci. Technol. 16(6), R65-R92 (2005).
    [CrossRef]
  48. T. Tlusty, A. Meller, and R. Bar-Ziv, "Optical gradient forces of strongly localized fields," Phys. Rev. Lett. 81, 1738-1741 (1998).
    [CrossRef]
  49. V. Karásek, O. Brzobohatý, and P. Zemánek, "Longitudinal optical binding of several spherical particles studied by the coupled dipole method," J. Opt. A: Pure Appl. Opt. 11, 034009 (2009).
    [CrossRef]
  50. V. Karásek, K. Dholakia, and P. Zemánek, "Analysis of optical binding in one dimension," Appl. Phys. B 84, 149-156 (2006).
    [CrossRef]
  51. B. T. Draine and P. J. Flatau, "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A 11, 1491-1499 (1994).
    [CrossRef]

2009 (1)

V. Karásek, O. Brzobohatý, and P. Zemánek, "Longitudinal optical binding of several spherical particles studied by the coupled dipole method," J. Opt. A: Pure Appl. Opt. 11, 034009 (2009).
[CrossRef]

2008 (6)

D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fibre trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008).
[CrossRef]

M. Šiler, T. ČižmárA. Jonáš and P. Zemánek, "Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination," New. J. Phys. 10, 113010 (2008).
[CrossRef]

V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Long-range onedimensional longitudinal optical binding," Phys. Rev. Lett. 101, 143601 (2008).
[CrossRef] [PubMed]

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 35, 42-55 (2008).
[CrossRef]

A. Jonáš and P. Zemánek, "Light at work: The use of optical forces for particle manipulation, sorting, and analysis." Electophoresis 29, 4813-4851 (2008).
[CrossRef]

D. C. Benito, S. H. Simpson, and S. Hanna, "FDTD simulations of forces on particles during holographic assembly," Opt. Express 16, 2942-2957 (2008).
[CrossRef] [PubMed]

2007 (4)

L. Kelemen, S. Valkai, and P. Ormos, "Parallel photopolymerisation with complex light patterns generated by diffractive optical elements," Opt. Express 15(22), 14488-14497 (2007).
[CrossRef]

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A.M. Bránczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, "Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam," Phys. Rev. E 75, 026613 (2007).
[CrossRef]

P. C. Chaumet and C. Billaudeau, "Coupled dipole method to compute optical torque: Application to a micropropeller," J. Appl. Phys. 1011, 023106 (2007).
[CrossRef]

2006 (12)

S. J. Cran-McGreehin, T. F. Krauss, and K. Dholakia, "Integrated monolithic optical manipulation," Lab Chip 6, 1122-1124 (2006).
[CrossRef] [PubMed]

T. Čižmár, M. Šiler, and P. Zemánek, "An optical nanotrap array movable over a milimetre range," Appl. Phys. B 84, 197-203 (2006).
[CrossRef]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
[CrossRef]

M. Šiler, T. Čižmár, M. Šerý and P. Zemánek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, "Sub-micron particle organization by self-imaging of non-diffracting beams," New. J. Phys. 8, 43 (2006).
[CrossRef]

V. Karásek, K. Dholakia, and P. Zemánek, "Analysis of optical binding in one dimension," Appl. Phys. B 84, 149-156 (2006).
[CrossRef]

A. Simon and M. Durrieu, "Strategies and results of atomic force microscopy in the study of cellular adhesion," Micron 37, 1-13 (2006).
[CrossRef]

L. Kelemen, S. Valkai, and P. Ormos, "Integrated Optical Rotor," Appl. Opt. 45, 2777-2779 (2006).
[CrossRef] [PubMed]

P. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman microspectroscopy of single cells," Opt. Express 14, 5779-5791 (2006).
[CrossRef] [PubMed]

T. M. Grzegorczyk, B. A. Kemp, and J. A. Kong, "Trapping and binding of an arbitrary number of cylindrical particles in an in-plane electromagnetic field," J. Opt. Soc. Am. A 23, 2324-2330 (2006).
[CrossRef]

J. Ježek, T. Čižmár, V. Neděla, and P. Zemánek, "Formation of long and thin polymer fiber using nondiffracting beam," Opt. Express 14, 8506-8515 (2006).
[CrossRef] [PubMed]

A. A. R. Neves, A. Fontes, L. de Y. Pozzo, A. A. de Thomaz, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, "Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric," Opt. Express 14, 13101-13106 (2006).
[CrossRef] [PubMed]

2005 (7)

A. R. Zakharian, M. Mansuripur, and J. V. Moloney, "Radiation pressure and the distribution of electromagnetic force in dielctric media," Opt. Express 13, 2321-2336 (2005).
[CrossRef] [PubMed]

R. C. Gauthier, "Computation of the optical trapping force using an FDTD based technique," Opt. Express 13, 3707-3718 (2005).
[CrossRef] [PubMed]

P. Rodrigo, L. Gammelgaard, P. Boggild, I. Perch-Nielsen, and J. Glückstad, "Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps," Opt. Express 13, 6899-6904 (2005).
[CrossRef] [PubMed]

A. Alessandrini and P. Facci, "AFM: a versatile tool in biophysics," Meas. Sci. Technol. 16(6), R65-R92 (2005).
[CrossRef]

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, "Optical conveyor belt for delivery of submicron objects," Appl. Phys. Lett. 86, 174101 (2005).
[CrossRef]

J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, "Photonic clusters formed by dielectric microspheres: Numerical simulations," Phys. Rev. B 72, 085130 (2005).
[CrossRef]

2004 (2)

D. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, "Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions," Rev. Sci. Instrum. 75(9), 2960-2970 (2004).
[CrossRef]

K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

2003 (3)

P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, "Theoretical comparison of optical traps created by standing wave and single beam," Opt. Commun. 220, 401-412 (2003).
[CrossRef]

A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, "Theory of trapping forces in optical tweezers," Proc.R. Soc. Lond. A 459, 3021-3041 (2003).
[CrossRef]

W. L. Collet, C. A. Ventrice, and S. M. Mahajan, "Electromagnetic wave technique to determine radiation torque on micromachines driven by light," Appl. Phys. Lett. 82, 2730-2732 (2003).
[CrossRef]

2002 (2)

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, "One-Dimensional Optically Bound Arrays of Microscopic Particles," Phys. Rev. Lett. 89, 283901 (2002).
[CrossRef]

P. Zemánek, A. Jonáš, and M. Liška, "Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave," J. Opt. Soc. Am. A 19, 1025-1034 (2002).
[CrossRef]

2001 (1)

2000 (2)

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451-5154 (2000).
[CrossRef] [PubMed]

D. A. White, "Vector finite element modeling of optical tweezers," Comp. Phys. Commun. 128, 558-564 (2000).
[CrossRef]

1999 (2)

1998 (2)

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, "Optical trapping of Rayleigh particles using a Gaussian standing wave," Opt. Commun. 151, 273-285 (1998).
[CrossRef]

T. Tlusty, A. Meller, and R. Bar-Ziv, "Optical gradient forces of strongly localized fields," Phys. Rev. Lett. 81, 1738-1741 (1998).
[CrossRef]

1997 (1)

1996 (1)

K. F. Ren, G. Gréhan, and G. Gouesbet, "Prediction of reverse radiation pressure by generalized Lorenz-Mie theory," Appl. Opt 35, 2702-2710 (1996).
[CrossRef] [PubMed]

1995 (1)

1994 (1)

1993 (1)

1989 (1)

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

1986 (1)

Alessandrini, A.

A. Alessandrini and P. Facci, "AFM: a versatile tool in biophysics," Meas. Sci. Technol. 16(6), R65-R92 (2005).
[CrossRef]

Alexander, D. R.

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

Ananthakrishnan, R.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451-5154 (2000).
[CrossRef] [PubMed]

Ashkin, A.

Barbosa, L. C.

Barton, J. P.

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

Bar-Ziv, R.

T. Tlusty, A. Meller, and R. Bar-Ziv, "Optical gradient forces of strongly localized fields," Phys. Rev. Lett. 81, 1738-1741 (1998).
[CrossRef]

Baskin, R. J.

Benito, D. C.

Bilby, C.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Billaudeau, C.

P. C. Chaumet and C. Billaudeau, "Coupled dipole method to compute optical torque: Application to a micropropeller," J. Appl. Phys. 1011, 023106 (2007).
[CrossRef]

Bjorkholm, J. E.

Block, S. M.

K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

Boggild, P.

Bouchal, Z.

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, "Sub-micron particle organization by self-imaging of non-diffracting beams," New. J. Phys. 8, 43 (2006).
[CrossRef]

Bránczyk, A.M.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A.M. Bránczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

Brzobohatý, O.

V. Karásek, O. Brzobohatý, and P. Zemánek, "Longitudinal optical binding of several spherical particles studied by the coupled dipole method," J. Opt. A: Pure Appl. Opt. 11, 034009 (2009).
[CrossRef]

V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Long-range onedimensional longitudinal optical binding," Phys. Rev. Lett. 101, 143601 (2008).
[CrossRef] [PubMed]

Cai, X.

F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, "Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam," Phys. Rev. E 75, 026613 (2007).
[CrossRef]

Carruthers, A. E.

D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fibre trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008).
[CrossRef]

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, "One-Dimensional Optically Bound Arrays of Microscopic Particles," Phys. Rev. Lett. 89, 283901 (2002).
[CrossRef]

Cesar, C. L.

Chan, C. T.

J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, "Photonic clusters formed by dielectric microspheres: Numerical simulations," Phys. Rev. B 72, 085130 (2005).
[CrossRef]

Chaumet, P. C.

P. C. Chaumet and C. Billaudeau, "Coupled dipole method to compute optical torque: Application to a micropropeller," J. Appl. Phys. 1011, 023106 (2007).
[CrossRef]

Chillce, A.

Chu, S.

Cižmár, T.

V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Long-range onedimensional longitudinal optical binding," Phys. Rev. Lett. 101, 143601 (2008).
[CrossRef] [PubMed]

M. Šiler, T. ČižmárA. Jonáš and P. Zemánek, "Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination," New. J. Phys. 10, 113010 (2008).
[CrossRef]

D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fibre trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008).
[CrossRef]

M. Šiler, T. Čižmár, M. Šerý and P. Zemánek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
[CrossRef]

J. Ježek, T. Čižmár, V. Neděla, and P. Zemánek, "Formation of long and thin polymer fiber using nondiffracting beam," Opt. Express 14, 8506-8515 (2006).
[CrossRef] [PubMed]

T. Čižmár, M. Šiler, and P. Zemánek, "An optical nanotrap array movable over a milimetre range," Appl. Phys. B 84, 197-203 (2006).
[CrossRef]

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, "Sub-micron particle organization by self-imaging of non-diffracting beams," New. J. Phys. 8, 43 (2006).
[CrossRef]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, "Optical conveyor belt for delivery of submicron objects," Appl. Phys. Lett. 86, 174101 (2005).
[CrossRef]

Collet, W. L.

W. L. Collet, C. A. Ventrice, and S. M. Mahajan, "Electromagnetic wave technique to determine radiation torque on micromachines driven by light," Appl. Phys. Lett. 82, 2730-2732 (2003).
[CrossRef]

Collins, S. D.

Constable, A.

Cran-McGreehin, S. J.

S. J. Cran-McGreehin, T. F. Krauss, and K. Dholakia, "Integrated monolithic optical manipulation," Lab Chip 6, 1122-1124 (2006).
[CrossRef] [PubMed]

Cunningham, C. C.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451-5154 (2000).
[CrossRef] [PubMed]

Dholakia, K.

V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Long-range onedimensional longitudinal optical binding," Phys. Rev. Lett. 101, 143601 (2008).
[CrossRef] [PubMed]

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 35, 42-55 (2008).
[CrossRef]

D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fibre trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008).
[CrossRef]

S. J. Cran-McGreehin, T. F. Krauss, and K. Dholakia, "Integrated monolithic optical manipulation," Lab Chip 6, 1122-1124 (2006).
[CrossRef] [PubMed]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
[CrossRef]

P. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman microspectroscopy of single cells," Opt. Express 14, 5779-5791 (2006).
[CrossRef] [PubMed]

V. Karásek, K. Dholakia, and P. Zemánek, "Analysis of optical binding in one dimension," Appl. Phys. B 84, 149-156 (2006).
[CrossRef]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, "Optical conveyor belt for delivery of submicron objects," Appl. Phys. Lett. 86, 174101 (2005).
[CrossRef]

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, "One-Dimensional Optically Bound Arrays of Microscopic Particles," Phys. Rev. Lett. 89, 283901 (2002).
[CrossRef]

Dogterom, M.

D. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, "Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions," Rev. Sci. Instrum. 75(9), 2960-2970 (2004).
[CrossRef]

Draine, B. T.

Durrieu, M.

A. Simon and M. Durrieu, "Strategies and results of atomic force microscopy in the study of cellular adhesion," Micron 37, 1-13 (2006).
[CrossRef]

Dziedzic, J. M.

Ebert, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Erickson, H. M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Facci, P.

A. Alessandrini and P. Facci, "AFM: a versatile tool in biophysics," Meas. Sci. Technol. 16(6), R65-R92 (2005).
[CrossRef]

Flatau, P. J.

Fontes, A.

Frijlink, M.

Gammelgaard, L.

Garcés-Chávez, V.

V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Long-range onedimensional longitudinal optical binding," Phys. Rev. Lett. 101, 143601 (2008).
[CrossRef] [PubMed]

P. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman microspectroscopy of single cells," Opt. Express 14, 5779-5791 (2006).
[CrossRef] [PubMed]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
[CrossRef]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, "Optical conveyor belt for delivery of submicron objects," Appl. Phys. Lett. 86, 174101 (2005).
[CrossRef]

Gauthier, R. C.

Gherardi, D. M.

D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fibre trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008).
[CrossRef]

Glückstad, J.

Gouesbet, G.

F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, "Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam," Phys. Rev. E 75, 026613 (2007).
[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, "Prediction of reverse radiation pressure by generalized Lorenz-Mie theory," Appl. Opt 35, 2702-2710 (1996).
[CrossRef] [PubMed]

Gréhan, G.

F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, "Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam," Phys. Rev. E 75, 026613 (2007).
[CrossRef]

K. F. Ren, G. Gréhan, and G. Gouesbet, "Prediction of reverse radiation pressure by generalized Lorenz-Mie theory," Appl. Opt 35, 2702-2710 (1996).
[CrossRef] [PubMed]

Grzegorczyk, T. M.

Gu, M.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 35, 42-55 (2008).
[CrossRef]

Guck, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451-5154 (2000).
[CrossRef] [PubMed]

Hanna, S.

Heckenberg, N. R.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A.M. Bránczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

Herrington, C.

Hoekstra, A. G.

Howitt, D. G.

Jákl, P.

P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, "Theoretical comparison of optical traps created by standing wave and single beam," Opt. Commun. 220, 401-412 (2003).
[CrossRef]

Jess, P.

Ježek, J.

J. Ježek, T. Čižmár, V. Neděla, and P. Zemánek, "Formation of long and thin polymer fiber using nondiffracting beam," Opt. Express 14, 8506-8515 (2006).
[CrossRef] [PubMed]

P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, "Theoretical comparison of optical traps created by standing wave and single beam," Opt. Commun. 220, 401-412 (2003).
[CrossRef]

Jonáš, A.

M. Šiler, T. ČižmárA. Jonáš and P. Zemánek, "Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination," New. J. Phys. 10, 113010 (2008).
[CrossRef]

A. Jonáš and P. Zemánek, "Light at work: The use of optical forces for particle manipulation, sorting, and analysis." Electophoresis 29, 4813-4851 (2008).
[CrossRef]

P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, "Theoretical comparison of optical traps created by standing wave and single beam," Opt. Commun. 220, 401-412 (2003).
[CrossRef]

P. Zemánek, A. Jonáš, and M. Liška, "Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave," J. Opt. Soc. Am. A 19, 1025-1034 (2002).
[CrossRef]

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, "Optical trapping of nanoparticles and microparticles using Gaussian standing wave." Opt. Lett. 24, 1448-1450 (1999).
[CrossRef]

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, "Optical trapping of Rayleigh particles using a Gaussian standing wave," Opt. Commun. 151, 273-285 (1998).
[CrossRef]

Karásek, V.

V. Karásek, O. Brzobohatý, and P. Zemánek, "Longitudinal optical binding of several spherical particles studied by the coupled dipole method," J. Opt. A: Pure Appl. Opt. 11, 034009 (2009).
[CrossRef]

V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Long-range onedimensional longitudinal optical binding," Phys. Rev. Lett. 101, 143601 (2008).
[CrossRef] [PubMed]

V. Karásek, K. Dholakia, and P. Zemánek, "Analysis of optical binding in one dimension," Appl. Phys. B 84, 149-156 (2006).
[CrossRef]

Käs, J.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451-5154 (2000).
[CrossRef] [PubMed]

Kawata, S.

Kelemen, L.

Kemp, B. A.

Kim, J.

Knöner, G.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A.M. Bránczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

Kollárová, V.

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, "Sub-micron particle organization by self-imaging of non-diffracting beams," New. J. Phys. 8, 43 (2006).
[CrossRef]

Kong, J. A.

Krauss, T. F.

S. J. Cran-McGreehin, T. F. Krauss, and K. Dholakia, "Integrated monolithic optical manipulation," Lab Chip 6, 1122-1124 (2006).
[CrossRef] [PubMed]

Lenz, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Lin, Z. F.

J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, "Photonic clusters formed by dielectric microspheres: Numerical simulations," Phys. Rev. B 72, 085130 (2005).
[CrossRef]

Lincoln, B.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Liška, M.

P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, "Theoretical comparison of optical traps created by standing wave and single beam," Opt. Commun. 220, 401-412 (2003).
[CrossRef]

P. Zemánek, A. Jonáš, and M. Liška, "Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave," J. Opt. Soc. Am. A 19, 1025-1034 (2002).
[CrossRef]

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, "Optical trapping of nanoparticles and microparticles using Gaussian standing wave." Opt. Lett. 24, 1448-1450 (1999).
[CrossRef]

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, "Optical trapping of Rayleigh particles using a Gaussian standing wave," Opt. Commun. 151, 273-285 (1998).
[CrossRef]

Loke, V. L. Y.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A.M. Bránczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

Mahajan, S. M.

W. L. Collet, C. A. Ventrice, and S. M. Mahajan, "Electromagnetic wave technique to determine radiation torque on micromachines driven by light," Appl. Phys. Lett. 82, 2730-2732 (2003).
[CrossRef]

Mansuripur, M.

Maruo, S.

Mazilu, M.

Mazolli, A.

A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, "Theory of trapping forces in optical tweezers," Proc.R. Soc. Lond. A 459, 3021-3041 (2003).
[CrossRef]

Meller, A.

T. Tlusty, A. Meller, and R. Bar-Ziv, "Optical gradient forces of strongly localized fields," Phys. Rev. Lett. 81, 1738-1741 (1998).
[CrossRef]

Mitchell, D.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Moloney, J. V.

Moon, T. J.

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451-5154 (2000).
[CrossRef] [PubMed]

Nakamura, O.

Nedela, V.

Neto, P. A. M.

A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, "Theory of trapping forces in optical tweezers," Proc.R. Soc. Lond. A 459, 3021-3041 (2003).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

Neves, A. A. R.

Ng, J.

J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, "Photonic clusters formed by dielectric microspheres: Numerical simulations," Phys. Rev. B 72, 085130 (2005).
[CrossRef]

Nieminen, T. A.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A.M. Bránczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

Nussenzveig, H. M.

A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, "Theory of trapping forces in optical tweezers," Proc.R. Soc. Lond. A 459, 3021-3041 (2003).
[CrossRef]

Ormos, P.

Paterson, L.

Perch-Nielsen, I.

Pozzo, A.

Reece, P.

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 35, 42-55 (2008).
[CrossRef]

Ren, K.

F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, "Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam," Phys. Rev. E 75, 026613 (2007).
[CrossRef]

Ren, K. F.

K. F. Ren, G. Gréhan, and G. Gouesbet, "Prediction of reverse radiation pressure by generalized Lorenz-Mie theory," Appl. Opt 35, 2702-2710 (1996).
[CrossRef] [PubMed]

Riches, A.

Rodrigo, P.

Rodriguez, A.

Romeyke, M.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Rubinsztein-Dunlop, H.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A.M. Bránczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

Schaub, S. A.

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

Schinkinger, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Šerý, M.

M. Šiler, T. Čižmár, M. Šerý and P. Zemánek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
[CrossRef]

P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, "Theoretical comparison of optical traps created by standing wave and single beam," Opt. Commun. 220, 401-412 (2003).
[CrossRef]

Sheng, P.

J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, "Photonic clusters formed by dielectric microspheres: Numerical simulations," Phys. Rev. B 72, 085130 (2005).
[CrossRef]

Sibbett, W.

Šiler, M.

M. Šiler, T. ČižmárA. Jonáš and P. Zemánek, "Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination," New. J. Phys. 10, 113010 (2008).
[CrossRef]

T. Čižmár, M. Šiler, and P. Zemánek, "An optical nanotrap array movable over a milimetre range," Appl. Phys. B 84, 197-203 (2006).
[CrossRef]

M. Šiler, T. Čižmár, M. Šerý and P. Zemánek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
[CrossRef]

Simon, A.

A. Simon and M. Durrieu, "Strategies and results of atomic force microscopy in the study of cellular adhesion," Micron 37, 1-13 (2006).
[CrossRef]

Simpson, S. H.

Sloot, P. M. A.

Smith, D.

Šrámek, L.

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, "Optical trapping of nanoparticles and microparticles using Gaussian standing wave." Opt. Lett. 24, 1448-1450 (1999).
[CrossRef]

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, "Optical trapping of Rayleigh particles using a Gaussian standing wave," Opt. Commun. 151, 273-285 (1998).
[CrossRef]

Stilgoe, A. B.

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A.M. Bránczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

Tatarkova, S. A.

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, "One-Dimensional Optically Bound Arrays of Microscopic Particles," Phys. Rev. Lett. 89, 283901 (2002).
[CrossRef]

Thomaz, A.

Tlusty, T.

T. Tlusty, A. Meller, and R. Bar-Ziv, "Optical gradient forces of strongly localized fields," Phys. Rev. Lett. 81, 1738-1741 (1998).
[CrossRef]

Ulvick, S.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Valkai, S.

van Blaaderen, A.

D. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, "Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions," Rev. Sci. Instrum. 75(9), 2960-2970 (2004).
[CrossRef]

van der Horst, A.

D. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, "Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions," Rev. Sci. Instrum. 75(9), 2960-2970 (2004).
[CrossRef]

Ventrice, C. A.

W. L. Collet, C. A. Ventrice, and S. M. Mahajan, "Electromagnetic wave technique to determine radiation torque on micromachines driven by light," Appl. Phys. Lett. 82, 2730-2732 (2003).
[CrossRef]

Vossen, D.

D. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, "Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions," Rev. Sci. Instrum. 75(9), 2960-2970 (2004).
[CrossRef]

Waters, L. B. F. M.

White, D. A.

D. A. White, "Vector finite element modeling of optical tweezers," Comp. Phys. Commun. 128, 558-564 (2000).
[CrossRef]

Wottawah, F.

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Wright, E. M.

D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fibre trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008).
[CrossRef]

Xu, F.

F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, "Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam," Phys. Rev. E 75, 026613 (2007).
[CrossRef]

Xu, Y.-L.

Zakharian, A. R.

Zemánek, P.

V. Karásek, O. Brzobohatý, and P. Zemánek, "Longitudinal optical binding of several spherical particles studied by the coupled dipole method," J. Opt. A: Pure Appl. Opt. 11, 034009 (2009).
[CrossRef]

M. Šiler, T. ČižmárA. Jonáš and P. Zemánek, "Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination," New. J. Phys. 10, 113010 (2008).
[CrossRef]

V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Long-range onedimensional longitudinal optical binding," Phys. Rev. Lett. 101, 143601 (2008).
[CrossRef] [PubMed]

A. Jonáš and P. Zemánek, "Light at work: The use of optical forces for particle manipulation, sorting, and analysis." Electophoresis 29, 4813-4851 (2008).
[CrossRef]

T. Čižmár, M. Šiler, and P. Zemánek, "An optical nanotrap array movable over a milimetre range," Appl. Phys. B 84, 197-203 (2006).
[CrossRef]

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, "Sub-micron particle organization by self-imaging of non-diffracting beams," New. J. Phys. 8, 43 (2006).
[CrossRef]

V. Karásek, K. Dholakia, and P. Zemánek, "Analysis of optical binding in one dimension," Appl. Phys. B 84, 149-156 (2006).
[CrossRef]

M. Šiler, T. Čižmár, M. Šerý and P. Zemánek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

J. Ježek, T. Čižmár, V. Neděla, and P. Zemánek, "Formation of long and thin polymer fiber using nondiffracting beam," Opt. Express 14, 8506-8515 (2006).
[CrossRef] [PubMed]

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
[CrossRef]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, "Optical conveyor belt for delivery of submicron objects," Appl. Phys. Lett. 86, 174101 (2005).
[CrossRef]

P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, "Theoretical comparison of optical traps created by standing wave and single beam," Opt. Commun. 220, 401-412 (2003).
[CrossRef]

P. Zemánek, A. Jonáš, and M. Liška, "Simplified description of optical forces acting on a nanoparticle in the Gaussian standing wave," J. Opt. Soc. Am. A 19, 1025-1034 (2002).
[CrossRef]

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, "Optical trapping of nanoparticles and microparticles using Gaussian standing wave." Opt. Lett. 24, 1448-1450 (1999).
[CrossRef]

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, "Optical trapping of Rayleigh particles using a Gaussian standing wave," Opt. Commun. 151, 273-285 (1998).
[CrossRef]

Appl. Opt (1)

K. F. Ren, G. Gréhan, and G. Gouesbet, "Prediction of reverse radiation pressure by generalized Lorenz-Mie theory," Appl. Opt 35, 2702-2710 (1996).
[CrossRef] [PubMed]

Appl. Opt. (3)

Appl. Phys. B (3)

T. Čižmár, M. Šiler, and P. Zemánek, "An optical nanotrap array movable over a milimetre range," Appl. Phys. B 84, 197-203 (2006).
[CrossRef]

M. Šiler, T. Čižmár, M. Šerý and P. Zemánek, "Optical forces generated by evanescent standing waves and their usage for sub-micron particle delivery," Appl. Phys. B 84, 157-165 (2006).
[CrossRef]

V. Karásek, K. Dholakia, and P. Zemánek, "Analysis of optical binding in one dimension," Appl. Phys. B 84, 149-156 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

D. M. Gherardi, A. E. Carruthers, T. Čižmár, E. M. Wright, and K. Dholakia, "A dual beam photonic crystal fibre trap for microscopic particles," Appl. Phys. Lett. 93, 041110 (2008).
[CrossRef]

T. Čižmár, V. Garcés-Chávez, K. Dholakia, and P. Zemánek, "Optical conveyor belt for delivery of submicron objects," Appl. Phys. Lett. 86, 174101 (2005).
[CrossRef]

W. L. Collet, C. A. Ventrice, and S. M. Mahajan, "Electromagnetic wave technique to determine radiation torque on micromachines driven by light," Appl. Phys. Lett. 82, 2730-2732 (2003).
[CrossRef]

Biophys. J. (1)

J. Guck, S. Schinkinger, B. Lincoln, F. Wottawah, S. Ebert, M. Romeyke, D. Lenz, H. M. Erickson, R. Ananthakrishnan, D. Mitchell, J. Käs, S. Ulvick, and C. Bilby, "Optical deformability as an inherent cell marker for testing malignant Transformation and Metastatic Competence," Biophys. J. 88, 3689-3698 (2005).
[CrossRef] [PubMed]

Chem. Soc. Rev. (1)

K. Dholakia, P. Reece, and M. Gu, "Optical micromanipulation," Chem. Soc. Rev. 35, 42-55 (2008).
[CrossRef]

Comp. Phys. Commun. (1)

D. A. White, "Vector finite element modeling of optical tweezers," Comp. Phys. Commun. 128, 558-564 (2000).
[CrossRef]

Electophoresis (1)

A. Jonáš and P. Zemánek, "Light at work: The use of optical forces for particle manipulation, sorting, and analysis." Electophoresis 29, 4813-4851 (2008).
[CrossRef]

J. Appl. Phys. (2)

J. P. Barton, D. R. Alexander, and S. A. Schaub, "Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam," J. Appl. Phys. 66, 4594-4602 (1989).
[CrossRef]

P. C. Chaumet and C. Billaudeau, "Coupled dipole method to compute optical torque: Application to a micropropeller," J. Appl. Phys. 1011, 023106 (2007).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (2)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A.M. Bránczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, "Optical tweezers computational toolbox," J. Opt. A: Pure Appl. Opt. 9, S196-S203 (2007).
[CrossRef]

V. Karásek, O. Brzobohatý, and P. Zemánek, "Longitudinal optical binding of several spherical particles studied by the coupled dipole method," J. Opt. A: Pure Appl. Opt. 11, 034009 (2009).
[CrossRef]

J. Opt. Soc. Am. A (4)

Lab Chip (1)

S. J. Cran-McGreehin, T. F. Krauss, and K. Dholakia, "Integrated monolithic optical manipulation," Lab Chip 6, 1122-1124 (2006).
[CrossRef] [PubMed]

Meas. Sci. Technol. (1)

A. Alessandrini and P. Facci, "AFM: a versatile tool in biophysics," Meas. Sci. Technol. 16(6), R65-R92 (2005).
[CrossRef]

Micron (1)

A. Simon and M. Durrieu, "Strategies and results of atomic force microscopy in the study of cellular adhesion," Micron 37, 1-13 (2006).
[CrossRef]

New. J. Phys. (2)

M. Šiler, T. ČižmárA. Jonáš and P. Zemánek, "Surface delivery of a single nanoparticle under moving evanescent standing-wave illumination," New. J. Phys. 10, 113010 (2008).
[CrossRef]

T. Čižmár, V. Kollárová, Z. Bouchal, and P. Zemánek, "Sub-micron particle organization by self-imaging of non-diffracting beams," New. J. Phys. 8, 43 (2006).
[CrossRef]

Opt. Commun. (2)

P. Zemánek, A. Jonáš, P. Jákl, M. Šerý, J. Ježek, and M. Liška, "Theoretical comparison of optical traps created by standing wave and single beam," Opt. Commun. 220, 401-412 (2003).
[CrossRef]

P. Zemánek, A. Jonáš, L. Šrámek, and M. Liška, "Optical trapping of Rayleigh particles using a Gaussian standing wave," Opt. Commun. 151, 273-285 (1998).
[CrossRef]

Opt. Express (8)

J. Ježek, T. Čižmár, V. Neděla, and P. Zemánek, "Formation of long and thin polymer fiber using nondiffracting beam," Opt. Express 14, 8506-8515 (2006).
[CrossRef] [PubMed]

A. A. R. Neves, A. Fontes, L. de Y. Pozzo, A. A. de Thomaz, E. Chillce, E. Rodriguez, L. C. Barbosa, and C. L. Cesar, "Electromagnetic forces for an arbitrary optical trapping of a spherical dielectric," Opt. Express 14, 13101-13106 (2006).
[CrossRef] [PubMed]

L. Kelemen, S. Valkai, and P. Ormos, "Parallel photopolymerisation with complex light patterns generated by diffractive optical elements," Opt. Express 15(22), 14488-14497 (2007).
[CrossRef]

D. C. Benito, S. H. Simpson, and S. Hanna, "FDTD simulations of forces on particles during holographic assembly," Opt. Express 16, 2942-2957 (2008).
[CrossRef] [PubMed]

A. R. Zakharian, M. Mansuripur, and J. V. Moloney, "Radiation pressure and the distribution of electromagnetic force in dielctric media," Opt. Express 13, 2321-2336 (2005).
[CrossRef] [PubMed]

R. C. Gauthier, "Computation of the optical trapping force using an FDTD based technique," Opt. Express 13, 3707-3718 (2005).
[CrossRef] [PubMed]

P. Rodrigo, L. Gammelgaard, P. Boggild, I. Perch-Nielsen, and J. Glückstad, "Actuation of microfabricated tools using multiple GPC-based counterpropagating-beam traps," Opt. Express 13, 6899-6904 (2005).
[CrossRef] [PubMed]

P. Jess, V. Garcés-Chávez, D. Smith, M. Mazilu, L. Paterson, A. Riches, C. Herrington, W. Sibbett, and K. Dholakia, "Dual beam fibre trap for Raman microspectroscopy of single cells," Opt. Express 14, 5779-5791 (2006).
[CrossRef] [PubMed]

Opt. Lett. (4)

Phys. Rev. B (2)

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Optical sorting and detection of sub-micron objects in a motional standing wave," Phys. Rev. B 74, 035105 (2006).
[CrossRef]

J. Ng, Z. F. Lin, C. T. Chan, and P. Sheng, "Photonic clusters formed by dielectric microspheres: Numerical simulations," Phys. Rev. B 72, 085130 (2005).
[CrossRef]

Phys. Rev. E (1)

F. Xu, K. Ren, G. Gouesbet, X. Cai, and G. Gréhan, "Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam," Phys. Rev. E 75, 026613 (2007).
[CrossRef]

Phys. Rev. Lett. (4)

J. Guck, R. Ananthakrishnan, T. J. Moon, C. C. Cunningham, and J. Käs, "Optical deformability of soft biological dielectrics," Phys. Rev. Lett. 84, 5451-5154 (2000).
[CrossRef] [PubMed]

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, "One-Dimensional Optically Bound Arrays of Microscopic Particles," Phys. Rev. Lett. 89, 283901 (2002).
[CrossRef]

V. Karásek, T. Čižmár, O. Brzobohatý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, "Long-range onedimensional longitudinal optical binding," Phys. Rev. Lett. 101, 143601 (2008).
[CrossRef] [PubMed]

T. Tlusty, A. Meller, and R. Bar-Ziv, "Optical gradient forces of strongly localized fields," Phys. Rev. Lett. 81, 1738-1741 (1998).
[CrossRef]

Proc.R. Soc. Lond. A (1)

A. Mazolli, P. A. M. Neto, and H. M. Nussenzveig, "Theory of trapping forces in optical tweezers," Proc.R. Soc. Lond. A 459, 3021-3041 (2003).
[CrossRef]

Rev. Sci. Instrum. (2)

K. C. Neuman and S. M. Block, "Optical trapping," Rev. Sci. Instrum. 75, 2787-2809 (2004).
[CrossRef]

D. Vossen, A. van der Horst, M. Dogterom, and A. van Blaaderen, "Optical tweezers and confocal microscopy for simultaneous three-dimensional manipulation and imaging in concentrated colloidal dispersions," Rev. Sci. Instrum. 75(9), 2960-2970 (2004).
[CrossRef]

Supplementary Material (4)

» Media 1: MOV (635 KB)     
» Media 2: MOV (644 KB)     
» Media 3: MOV (730 KB)     
» Media 4: MOV (280 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Two different shapes of the prolate objects of cylindrical and mirror symmetry considered in the force optimization: overlapping spheres (case A) and sinusoidal chain (case B). R denotes the maximal radius from the optical axis z, D is the length of the period (distance between centres of the neighbouring overlapping spheres; D≤2R), A represents the amplitude of the sinusoidal modulation of the radius, and the bases on both sides can be shifted axially by a distance d. The shown objects are made of N=4 units, one of them is shaded.

Fig. 2.
Fig. 2.

Dependence of the term G on period D/λ given by Eq. (5).

Fig. 3.
Fig. 3.

Dependence of the term T on period D/λ given by Eq. (7) for N overlapping spheres.

Fig. 4.
Fig. 4.

Amplitude of the axial optical force FztotalNsph (see Eq. (9)) as a function of the distance D between the centres of neighbouring overlapping spheres and the sphere radius R for optimized displacements of bases d/8 (upper graph) and d=-λ/8 (lower graph) resulting in extreme forces. Number of units N=4 is the same for both graphs, associated movie reveals the results for other N (Media 1). Refractive index of the environment n 2=1.33, refractive index of the object n 1=1.35, and F 0 is normalized to 1 pN. The marked points indicate local extremes of the force calculated numerically.

Fig. 5.
Fig. 5.

Amplitude of the axial optical force FztotalNsph (see Eq. (9)) as a function of the distance D between the centres of neighbouring overlapping spheres and the sphere radius R for the bases displacements d=0 (upper graph) and d=R (lower graph). Number of units N=4 is the same for both graphs, associated movie reveals the results for other N (Media 2). Refractive index of the environment n 2=1.33, refractive index of the object n 1=1.35, F 0=1 pN. The marked points indicate local extremes of the force calculated numerically.

Fig. 6.
Fig. 6.

Dependence of the terms T 1 and T 2 (expressed by Eq. (13) and Eq. (14), respectively) on D̄=D/λ for bases displacement d=0, object radius R=λ and sinusoidal modulation of the radius A=0.3λ

Fig. 7.
Fig. 7.

Amplitude of the total axial optical force Fztotalsin (done by Eq. (16)) acting upon the sinusoidal chain as a function of modulation period D and coefficient v=2A/R with fixed R=0.6λ (upper graph) or radius R with fixed v=0.5 (lower graph) for the same displacements of bases d=λ/8, number of units N=4, and F 0=1 pN. Associated movie shows the development for different number of units N (Media 3).

Fig. 8.
Fig. 8.

Ratio of the maximal optical forces acting on the sinusoidal chain (see Eq. (18)) and on the overlapping cropped spheres (see Eq. (11)) as a function of the radius R for the following fixed parameters: D=λ/2, d=λ/8, and v=1. Note that for large radius a limit of the ratio rises linearly with increasing number of units N.

Fig. 9.
Fig. 9.

Comparison of the amplitudes of the axial optical forces acting upon five overlapping spheres made of refractive indices n 1=1.35 and n1=1.41 (silica). The forces are calculated analytically (dashed line) and numerically by CDM (solid line) as a function of sphere diameter 2R. The following parameters were used: refractive index of the host medium n 2=1.33, number of units N=5, sphere period D=0.7λ, bases displacement d=0, F 0=1pN.

Fig. 10.
Fig. 10.

Comparison of the axial optical force amplitudes as a function of period D of overlapping spheres (Fig. 1A) and object refractive index n 1. Lower graph shows analytical results from Eq. (9) and middle graph shows results by numerical CDM, both for the sphere radius R=0.6λ, bases displacement d=0, refractive index of the host medium n 2=1.33, and F 0=1 pN. Number of units N=4 is the same for all graphs and it varies in the associated movie (Media 4). The profiles of the force amplitudes at n 1=1.35 are in a very good agreement (see upper graph). However with increasing the object refractive index n1 locations of the axial force extremes with respect to D and force magnitudes change. This is because of the optical field scattered by the object that cannot be neglected anymore and that modifies the incident (standing wave) field.

Equations (36)

Equations on this page are rendered with MathJax. Learn more.

I (z)=2 I0 [1+cos(2kz)],
Fz(ro)=α2n2cSI(r)nz(r)dS,
FzbaseA=α2n2cI(zA)SA,FzbaseB=+α2n2cI(zB)SB,
Fzcyl(Z)=α2n2c2I0[cos(2kzA)+cos(2kzB)]πR2
=2F0(kR)2sin(kL)sin(2kZ),withforceunitF0=αn2cπk2I0,
Fzcoatsph(z1)=F0G(kD)sin(2kz1),withtermG(kD)=sin (kD)kDcos(kD),
Fzcoatexsph=(1)MF0πM.
FzcoatNsph(Z)=F0T(kD,N)sin(2kZ),withtermT(kD,N)=G (kD) sin(NkD)sin(kD) .
FzcoatexNsph=F0T(kMλ2,N)=(1)MNF0πMN,
FztotalNsph(Z)=FzcoatNsph(Z)+ΔFzcoatNsph(Z)+FzbasesNsph(Z)
=F0{[sin(kD)kDcos(kD)] sin(NkD)sin(kD)
[2kdcos(kL)sin(kL)+sin(NkD)kDcos(NkD)]
+2 [(kR)2(kd)2]sin(kL)}sin(2kZ).
D=M̄λ/2,whereM̄=max(M)4R/λ,andd={+λ8foroddM̄,λ8forevenM̄,
FztotalexNsph(N,R)=(1)M̄NF0{πM̄(N1)+1π28+8π2(Rλ)2},
Fzcoatsin=F0(T1+T2)sin(2kZ),
T1=(kA)2D̄cos(kL)sin(2kd/D̄)sin(kL)cos(2kdD̄)(D+1)(D1),
T2=(kA)(kRkA)2D̄cos(kL)sin(kdD̄)sin(kL)cos(kdD̄)(D̄+12)(D̄12),
Fzbasessin=2F0(kB)2sin(kL)sin(2kZ),
Fztotalsin(Z)=Fzcoatsin(Z)+Fzbasessin(Z)=F0[2(kB)2sin(kL)T1T2]sin(2kZ).
Fz1totalmaxsin=F0(kR)2{[23234+(34N)π16]v2+[2432]v2},
Fz2totalmaxsin=(1)NF0(kR)2{[56(2N1)π4]v2+[(2N1)π22]v+2},
v=123π(2N1)10'
V2=R2λ8[2v(2v)+π(2N1)(22v+34v2)].
Fz(z1)=α2n2c2πzazbI(z)(zz1)dz,
ΔFzcoatNsph(Z)=F0[2kdcos(kL)sin(kL)+sin(NkD)kDcos(NkD)]sin(2kZ),
FzbasesNsph(Z)=2F0[(kR)2(kd)2]sin(kL)sin(2kZ).
FztotalNsph(Z)=FzcoatNsph(Z)+ΔFzcoatNsph(Z)+FzbasesNsph(Z).
FztotalexNsph(M,Q)=(1)MNF0×
{(1)QM[π28(2Q+1)22(kR)21]+πM(N1)}sin(2kZ).
FztotalexNsphA1=(1)MNF0{(1)PMπP+πM(N1)}.
FztotalmaxNsphA1=F0(1)PNπPN.
Fz(Z)=2πα2n2czAzBI(z)r(z)r(z)dz.
r(z)=RA+Acos[2πD(zz1)],
Fz=2F0k2L2L2[1+cos(2kz˜)cos(2kZ)sin(2kz˜)sin(2kZ)]r(z˜)r(z˜)dz˜,
Fz= 2 F0 k2 sin (2kZ)L2L2sin(2kz˜)r(z˜)r(z˜)dz˜

Metrics