Abstract

By exploiting the small bend radius achievable using high-index-contrast silicon photonic wire waveguides, we demonstrate a new low power thermo-optic switch arranged in a dense, double spiral geometry. Such a design permits the waveguide length to be extended for increased phase shift, without the need for increased heated volume. This provides an effective means to reduce the power consumption of thermo-optic switches, as well as a compact geometry desirable for the development of switch arrays. A low switching power of 6.5 mW was obtained for a spiral-path Mach-Zehnder interferometer device having a 10% - 90% rise time of 14 μs. The switching power is shown to be reduced by more than 5 times compared to a Mach-Zehnder interferometer employing a conventional straight waveguide geometry.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett. 15(9), 1300–1302 (2003).
    [CrossRef]
  2. Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5(7), 782–784 (1993).
    [CrossRef]
  3. U. Fischer, T. Zinke, B. Schuppert, and K. Petermann, “Singlemode optical switches based on SOI waveguides with large cross-section,” Electron. Lett. 30(5), 406–408 (1994).
    [CrossRef]
  4. S. Janz, P. Cheben, A. Delage, B. Lamontagne, M.-J. Picard, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonics: current challenges and applications,” in Frontiers in Planar Lightwave Circuit Technology, S. Janz, J. Ctyroky, and S. Tanev, eds. (Springer, Dordrecht, 2006), pp. 1–38.
  5. K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
    [CrossRef]
  6. X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20(11), 936–938 (2008).
    [CrossRef]
  7. I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. 18(2), 364–366 (2006).
    [CrossRef]
  8. M. W. Pruessner, T. H. Stievater, M. S. Ferraro, and W. S. Rabinovich, “Thermo-optic tuning and switching in SOI waveguide Fabry-Perot microcavities,” Opt. Express 15(12), 7557–7563 (2007).
    [CrossRef] [PubMed]
  9. M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach–Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
    [CrossRef]
  10. Y. Li, J. Yu, S. Chen, Y. Li, and Y. Chen, “Submicrosecond rearrangeable nonblocking silicon-on-insulator thermo-optic 4x4 switch matrix,” Opt. Lett. 32(6), 603–604 (2007).
    [CrossRef] [PubMed]
  11. Y. Li, J. Yu, and S. Chen, “Rearrangeable nonblocking SOI waveguide thermooptic 4×4 switch matrix with low insertion loss and fast response,” IEEE Photon. Technol. Lett. 17(8), 1641–1643 (2005).
    [CrossRef]
  12. R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
    [CrossRef]
  13. T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express 13(25), 10109–10114 (2005).
    [CrossRef] [PubMed]
  14. OlympIOs Selene software package from C2V.
  15. K. K. Lee, D. R. Lim, L. C. Kimerling, J. Shin, and F. Cerrina, “Fabrication of ultralow-loss Si/SiO(2) waveguides by roughness reduction,” Opt. Lett. 26(23), 1888–1890 (2001).
    [CrossRef]
  16. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23(8), 2455–2461 (2005).
    [CrossRef]

2008 (1)

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20(11), 936–938 (2008).
[CrossRef]

2007 (2)

2006 (1)

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. 18(2), 364–366 (2006).
[CrossRef]

2005 (4)

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

Y. Li, J. Yu, and S. Chen, “Rearrangeable nonblocking SOI waveguide thermooptic 4×4 switch matrix with low insertion loss and fast response,” IEEE Photon. Technol. Lett. 17(8), 1641–1643 (2005).
[CrossRef]

T. Chu, H. Yamada, S. Ishida, and Y. Arakawa, “Compact 1 × N thermo-optic switches based on silicon photonic wire waveguides,” Opt. Express 13(25), 10109–10114 (2005).
[CrossRef] [PubMed]

D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon waveguide sidewall smoothing by wet chemical oxidation,” J. Lightwave Technol. 23(8), 2455–2461 (2005).
[CrossRef]

2004 (1)

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach–Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[CrossRef]

2003 (2)

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett. 15(9), 1300–1302 (2003).
[CrossRef]

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

2001 (1)

1994 (1)

U. Fischer, T. Zinke, B. Schuppert, and K. Petermann, “Singlemode optical switches based on SOI waveguides with large cross-section,” Electron. Lett. 30(5), 406–408 (1994).
[CrossRef]

1993 (1)

Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5(7), 782–784 (1993).
[CrossRef]

Aalto, T.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach–Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[CrossRef]

Arakawa, Y.

Aydinli, A.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. 18(2), 364–366 (2006).
[CrossRef]

Baba, T.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

Cerrina, F.

Chen, S.

Y. Li, J. Yu, S. Chen, Y. Li, and Y. Chen, “Submicrosecond rearrangeable nonblocking silicon-on-insulator thermo-optic 4x4 switch matrix,” Opt. Lett. 32(6), 603–604 (2007).
[CrossRef] [PubMed]

Y. Li, J. Yu, and S. Chen, “Rearrangeable nonblocking SOI waveguide thermooptic 4×4 switch matrix with low insertion loss and fast response,” IEEE Photon. Technol. Lett. 17(8), 1641–1643 (2005).
[CrossRef]

Chen, Y.

Chu, T.

Dagli, N.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. 18(2), 364–366 (2006).
[CrossRef]

Espinola, R. L.

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

Ferraro, M. S.

Fischer, U.

U. Fischer, T. Zinke, B. Schuppert, and K. Petermann, “Singlemode optical switches based on SOI waveguides with large cross-section,” Electron. Lett. 30(5), 406–408 (1994).
[CrossRef]

Goh, T.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett. 15(9), 1300–1302 (2003).
[CrossRef]

Harjanne, M.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach–Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[CrossRef]

Heimala, P.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach–Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[CrossRef]

Hibino, Y.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett. 15(9), 1300–1302 (2003).
[CrossRef]

Hida, Y.

Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5(7), 782–784 (1993).
[CrossRef]

Himeno, A.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett. 15(9), 1300–1302 (2003).
[CrossRef]

Imamura, S.

Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5(7), 782–784 (1993).
[CrossRef]

Ishida, S.

Ishii, M.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett. 15(9), 1300–1302 (2003).
[CrossRef]

Itoh, M.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett. 15(9), 1300–1302 (2003).
[CrossRef]

Kapulainen, M.

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach–Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[CrossRef]

Kimerling, L. C.

Kiyat, I.

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. 18(2), 364–366 (2006).
[CrossRef]

Lee, K. K.

Li, Y.

Lim, D. R.

Martinez, J. A.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20(11), 936–938 (2008).
[CrossRef]

Motegi, A.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

Nawrocka, M. S.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20(11), 936–938 (2008).
[CrossRef]

Ohno, F.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

Okuno, M.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett. 15(9), 1300–1302 (2003).
[CrossRef]

Onose, H.

Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5(7), 782–784 (1993).
[CrossRef]

Osgood, R. M.

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

Panepucci, R. R.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20(11), 936–938 (2008).
[CrossRef]

Petermann, K.

U. Fischer, T. Zinke, B. Schuppert, and K. Petermann, “Singlemode optical switches based on SOI waveguides with large cross-section,” Electron. Lett. 30(5), 406–408 (1994).
[CrossRef]

Pruessner, M. W.

Rabinovich, W. S.

Sasaki, K.

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

Schuppert, B.

U. Fischer, T. Zinke, B. Schuppert, and K. Petermann, “Singlemode optical switches based on SOI waveguides with large cross-section,” Electron. Lett. 30(5), 406–408 (1994).
[CrossRef]

Shibata, T.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett. 15(9), 1300–1302 (2003).
[CrossRef]

Shin, J.

Sparacin, D. K.

Spector, S. J.

Stievater, T. H.

Sugita, A.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett. 15(9), 1300–1302 (2003).
[CrossRef]

Tsai, M.-C.

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

Wang, X.

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20(11), 936–938 (2008).
[CrossRef]

Watanabe, T.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett. 15(9), 1300–1302 (2003).
[CrossRef]

Yamada, H.

Yardley, J. T.

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

Yasu, M.

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett. 15(9), 1300–1302 (2003).
[CrossRef]

Yu, J.

Y. Li, J. Yu, S. Chen, Y. Li, and Y. Chen, “Submicrosecond rearrangeable nonblocking silicon-on-insulator thermo-optic 4x4 switch matrix,” Opt. Lett. 32(6), 603–604 (2007).
[CrossRef] [PubMed]

Y. Li, J. Yu, and S. Chen, “Rearrangeable nonblocking SOI waveguide thermooptic 4×4 switch matrix with low insertion loss and fast response,” IEEE Photon. Technol. Lett. 17(8), 1641–1643 (2005).
[CrossRef]

Zinke, T.

U. Fischer, T. Zinke, B. Schuppert, and K. Petermann, “Singlemode optical switches based on SOI waveguides with large cross-section,” Electron. Lett. 30(5), 406–408 (1994).
[CrossRef]

Electron. Lett. (2)

U. Fischer, T. Zinke, B. Schuppert, and K. Petermann, “Singlemode optical switches based on SOI waveguides with large cross-section,” Electron. Lett. 30(5), 406–408 (1994).
[CrossRef]

K. Sasaki, F. Ohno, A. Motegi, and T. Baba, “Arrayed waveguide grating of 70 × 60 μm2 size based on Si photonic wire waveguides,” Electron. Lett. 41(14), 801–802 (2005).
[CrossRef]

IEEE Photon. Technol. (1)

I. Kiyat, A. Aydinli, and N. Dagli, “Low-power thermooptical tuning of SOI resonator switch,” IEEE Photon. Technol. 18(2), 364–366 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

M. Harjanne, M. Kapulainen, T. Aalto, and P. Heimala, “Sub-μs switching time in silicon-on-insulator Mach–Zehnder thermooptic switch,” IEEE Photon. Technol. Lett. 16, 2039–2041 (2004).
[CrossRef]

Y. Li, J. Yu, and S. Chen, “Rearrangeable nonblocking SOI waveguide thermooptic 4×4 switch matrix with low insertion loss and fast response,” IEEE Photon. Technol. Lett. 17(8), 1641–1643 (2005).
[CrossRef]

R. L. Espinola, M.-C. Tsai, J. T. Yardley, and R. M. Osgood., “Fast and low-power thermooptic switch on thin silicon-on-insulator,” IEEE Photon. Technol. Lett. 15(10), 1366–1368 (2003).
[CrossRef]

T. Shibata, M. Okuno, T. Goh, T. Watanabe, M. Yasu, M. Itoh, M. Ishii, Y. Hibino, A. Sugita, and A. Himeno, “Silica-based waveguide-type 16 × 16 optical switch module incorporating driving circuits,” IEEE Photon. Technol. Lett. 15(9), 1300–1302 (2003).
[CrossRef]

Y. Hida, H. Onose, and S. Imamura, “Polymer waveguide thermooptic switch with low electric power consumption at 1.3 μm,” IEEE Photon. Technol. Lett. 5(7), 782–784 (1993).
[CrossRef]

X. Wang, J. A. Martinez, M. S. Nawrocka, and R. R. Panepucci, “Compact thermally tunable silicon wavelength switch: modeling and characterization,” IEEE Photon. Technol. Lett. 20(11), 936–938 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (2)

Opt. Lett. (2)

Other (2)

S. Janz, P. Cheben, A. Delage, B. Lamontagne, M.-J. Picard, D.-X. Xu, K. P. Yap, and W. N. Ye, “Microphotonics: current challenges and applications,” in Frontiers in Planar Lightwave Circuit Technology, S. Janz, J. Ctyroky, and S. Tanev, eds. (Springer, Dordrecht, 2006), pp. 1–38.

OlympIOs Selene software package from C2V.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Conventional Mach-Zehnder interferometer switch containing straight waveguides and a thin film heater above one arm (2 × 2 configuration shown). (a) Top view, (b) cross-section of the active waveguide using the SOI material system.

Fig. 2
Fig. 2

(a) Top view of a Mach-Zehnder interferometer thermo-optic switch employing photonic wire waveguides arranged in a dense, double spiral geometry. A thin film heater is deposited over one arm of the device. (b) Close up of the active waveguide arm.

Fig. 3
Fig. 3

(a) Simulated cross-sectional temperature distribution for the device shown in Fig. 2, containing twelve 10 μm wide heaters of 12 μm pitch and 59 photonic wire waveguides with a spacing of 2 μm. (b) Temperature distribution along the plane of the waveguides at y = 0. The dashed lines indicate the x-positions of the photonic wire waveguides.

Fig. 4
Fig. 4

Measured switching power versus waveguide length for straight and spiral switch designs. All spiral switches have the same heater design and circular area. The dashed lines are the fits to the measured data using a constant value for the straight waveguide configuration and a length−1 dependence for the spiral design.

Fig. 5
Fig. 5

Transmission data for a Mach-Zehnder interferometer with a 6.3 mm long spiral waveguide contained in a circular radius of 65 μm. A switching power of 6.5 mW is observed.

Fig. 6
Fig. 6

Response of the Mach-Zehnder interferometer switch shown in Fig. 2 to a square wave voltage signal applied to the heater. A 10-90% rise time of 14 μs is observed.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δφ=2πλ(NeffT)ΔTLH ,

Metrics