Abstract

A simple method to trap and manipulate metallic micro/nano-particles on the surface of photorefractive crystals is proposed. After inducing inhomogeneous charge density and space-charge fields in photorefractive crystals by non-uniform illumination, both uncharged and charged metallic particles can be trapped on the illuminated surface due to dielectrophoretic force and electrophoretic force, respectively. A transition from dielectrophoresis to electrophoresis is observed when manipulating nano-silver particles with high surface space-charge field. Our results show that this method is simple and effective to form surface microstructures of metallic particles.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
    [CrossRef]
  2. H. R. Stuart and D. G. Hall, “Enhanced dipole–dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998).
    [CrossRef]
  3. A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
    [CrossRef]
  4. L. Eurenius, C. Hägglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle mediated coupling of light into waveguided modes,” Nat. Photonics 2(6), 360–364 (2008).
    [CrossRef]
  5. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
    [CrossRef] [PubMed]
  6. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
    [CrossRef]
  7. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11(5), 288–290 (1986).
    [CrossRef] [PubMed]
  8. P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
    [CrossRef] [PubMed]
  9. H. A. Pohl, “The motion and precipitation of suspensoids in divergent electric fields,” J. Appl. Phys. 22(7), 869 (1951).
    [CrossRef]
  10. H. A. Pohl, “Some effects of nonuniform fields on dielectrics,” J. Appl. Phys. 29(8), 1182 (1958).
    [CrossRef]
  11. R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
    [CrossRef] [PubMed]
  12. P. R. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002).
    [CrossRef] [PubMed]
  13. G. Hu and D. Li, “Multiscale phenomena in microfluidics and nanofluidic,” Chem. Eng. Sci. 62(13), 3443–3454 (2007).
    [CrossRef]
  14. R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
    [CrossRef] [PubMed]
  15. M. P. Hughes, “Dielectrophoretic behavior of latex nanospheres: low-frequency dispersion,” J. Colloid Interface Sci. 250(2), 291–294 (2002).
    [CrossRef]
  16. A. Iuga, R. Morar, A. Samuila, and L. Dascalescu, “Electrostatic separation of metals and plastics from granular industrial wastes,” IEE Proc. Sci. Meas. Technol. 148(2), 47–54 (2001).
    [CrossRef]
  17. S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 79(7), 901–903 (2001).
    [CrossRef]
  18. H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
    [CrossRef]
  19. P. Yeh, “Introduction to photorefractive nonlinear optics,” (Wiley, New York, 1993).
  20. K. Buse, “Light induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
    [CrossRef]
  21. E E. Serrano, V. Lopez, M. Carrascosa, and F. Agullo-Lopez, “Steady-state photorefractive gratings in LiNbO/sub 3/ for strong light modulation depths,” IEEE J. Quantum Electron. 30, 875–880 (1994).
    [CrossRef]
  22. B. Khusid and A. Acrivos, “Effects of interparticle electric interactions on dielectrophoresis in colloidal suspensions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(5), 5428–5435 (1996).
    [CrossRef] [PubMed]
  23. X. Shen, J. Zhao, R. Wang, X. Yi, P. Yeh, and H. Chen, “Recording of second-harmonic index gratings in photorefractive (K(0.5) Na(0.5))(0.2) (Sr(0.75) Ba(0.25))(0.9) Nb(2)O(6) crystals,” Opt. Lett. 24(5), 312–314 (1999).
    [CrossRef]
  24. F. Vachss and L. Hesselink, “Nonlinear photorefractive response at high modulation depths,” J. Opt. Soc. Am. A 5(5), 690–701 (1988).
    [CrossRef]
  25. A. Bledowski, J. Otten, and K. H. Ringhofer, “Photorefractive hologram writing with modulation 1,” Opt. Lett. 16(9), 672–674 (1991).
    [CrossRef] [PubMed]
  26. P. Vaveliuk, B. Ruiz, and N. Bolognini, “Analysis of the steady-state photorefractive harmonic gratings,” Phys. Rev. B 59(16), 10985–10991 (1999).
    [CrossRef]
  27. P. M. Johansen, “Photorefractive space-charge field formation: linear and nonlinear effects,” J. Opt. A, Pure Appl. Opt. 5(6), S398–S415 (2003).
    [CrossRef]
  28. A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
    [CrossRef]
  29. R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
    [CrossRef]

2008 (1)

L. Eurenius, C. Hägglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle mediated coupling of light into waveguided modes,” Nat. Photonics 2(6), 360–364 (2008).
[CrossRef]

2007 (2)

G. Hu and D. Li, “Multiscale phenomena in microfluidics and nanofluidic,” Chem. Eng. Sci. 62(13), 3443–3454 (2007).
[CrossRef]

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

2005 (1)

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

2004 (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

2003 (3)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

P. M. Johansen, “Photorefractive space-charge field formation: linear and nonlinear effects,” J. Opt. A, Pure Appl. Opt. 5(6), S398–S415 (2003).
[CrossRef]

2002 (2)

P. R. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002).
[CrossRef] [PubMed]

M. P. Hughes, “Dielectrophoretic behavior of latex nanospheres: low-frequency dispersion,” J. Colloid Interface Sci. 250(2), 291–294 (2002).
[CrossRef]

2001 (2)

A. Iuga, R. Morar, A. Samuila, and L. Dascalescu, “Electrostatic separation of metals and plastics from granular industrial wastes,” IEE Proc. Sci. Meas. Technol. 148(2), 47–54 (2001).
[CrossRef]

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 79(7), 901–903 (2001).
[CrossRef]

1999 (2)

1998 (1)

H. R. Stuart and D. G. Hall, “Enhanced dipole–dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998).
[CrossRef]

1997 (3)

R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
[CrossRef] [PubMed]

R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
[CrossRef] [PubMed]

K. Buse, “Light induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
[CrossRef]

1996 (2)

B. Khusid and A. Acrivos, “Effects of interparticle electric interactions on dielectrophoresis in colloidal suspensions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(5), 5428–5435 (1996).
[CrossRef] [PubMed]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[CrossRef]

1994 (1)

E E. Serrano, V. Lopez, M. Carrascosa, and F. Agullo-Lopez, “Steady-state photorefractive gratings in LiNbO/sub 3/ for strong light modulation depths,” IEEE J. Quantum Electron. 30, 875–880 (1994).
[CrossRef]

1991 (1)

1988 (1)

1986 (1)

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

1974 (1)

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[CrossRef]

1958 (1)

H. A. Pohl, “Some effects of nonuniform fields on dielectrics,” J. Appl. Phys. 29(8), 1182 (1958).
[CrossRef]

1951 (1)

H. A. Pohl, “The motion and precipitation of suspensoids in divergent electric fields,” J. Appl. Phys. 22(7), 869 (1951).
[CrossRef]

Acrivos, A.

B. Khusid and A. Acrivos, “Effects of interparticle electric interactions on dielectrophoresis in colloidal suspensions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(5), 5428–5435 (1996).
[CrossRef] [PubMed]

Adamovsky, G.

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 79(7), 901–903 (2001).
[CrossRef]

Adleman, J. R.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

Agullo-Lopez, F.

E E. Serrano, V. Lopez, M. Carrascosa, and F. Agullo-Lopez, “Steady-state photorefractive gratings in LiNbO/sub 3/ for strong light modulation depths,” IEEE J. Quantum Electron. 30, 875–880 (1994).
[CrossRef]

Ashkin, A.

Bjorkholm, J. E.

Bledowski, A.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

Bolognini, N.

P. Vaveliuk, B. Ruiz, and N. Bolognini, “Analysis of the steady-state photorefractive harmonic gratings,” Phys. Rev. B 59(16), 10985–10991 (1999).
[CrossRef]

Buse, K.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

K. Buse, “Light induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
[CrossRef]

Carrascosa, M.

E E. Serrano, V. Lopez, M. Carrascosa, and F. Agullo-Lopez, “Steady-state photorefractive gratings in LiNbO/sub 3/ for strong light modulation depths,” IEEE J. Quantum Electron. 30, 875–880 (1994).
[CrossRef]

Chakarov, D.

L. Eurenius, C. Hägglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle mediated coupling of light into waveguided modes,” Nat. Photonics 2(6), 360–364 (2008).
[CrossRef]

Chen, H.

Chiou, P. Y.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Chu, S.

Curley, M. J.

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 79(7), 901–903 (2001).
[CrossRef]

Dascalescu, L.

A. Iuga, R. Morar, A. Samuila, and L. Dascalescu, “Electrostatic separation of metals and plastics from granular industrial wastes,” IEE Proc. Sci. Meas. Technol. 148(2), 47–54 (2001).
[CrossRef]

Dziedzic, J. M.

Eggert, H. A.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

Eurenius, L.

L. Eurenius, C. Hägglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle mediated coupling of light into waveguided modes,” Nat. Photonics 2(6), 360–364 (2008).
[CrossRef]

Fields, A.

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 79(7), 901–903 (2001).
[CrossRef]

Gascoyne, P. R.

P. R. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002).
[CrossRef] [PubMed]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

Glass, A. M.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[CrossRef]

Goldberger, J.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Grier, D. G.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

Hägglund, C.

L. Eurenius, C. Hägglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle mediated coupling of light into waveguided modes,” Nat. Photonics 2(6), 360–364 (2008).
[CrossRef]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Enhanced dipole–dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[CrossRef]

He, R.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Hess, C.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Hesselink, L.

Hu, G.

G. Hu and D. Li, “Multiscale phenomena in microfluidics and nanofluidic,” Chem. Eng. Sci. 62(13), 3443–3454 (2007).
[CrossRef]

Hughes, M. P.

M. P. Hughes, “Dielectrophoretic behavior of latex nanospheres: low-frequency dispersion,” J. Colloid Interface Sci. 250(2), 291–294 (2002).
[CrossRef]

Iuga, A.

A. Iuga, R. Morar, A. Samuila, and L. Dascalescu, “Electrostatic separation of metals and plastics from granular industrial wastes,” IEE Proc. Sci. Meas. Technol. 148(2), 47–54 (2001).
[CrossRef]

Johansen, P. M.

P. M. Johansen, “Photorefractive space-charge field formation: linear and nonlinear effects,” J. Opt. A, Pure Appl. Opt. 5(6), S398–S415 (2003).
[CrossRef]

Kasemo, B.

L. Eurenius, C. Hägglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle mediated coupling of light into waveguided modes,” Nat. Photonics 2(6), 360–364 (2008).
[CrossRef]

Khusid, B.

B. Khusid and A. Acrivos, “Effects of interparticle electric interactions on dielectrophoresis in colloidal suspensions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(5), 5428–5435 (1996).
[CrossRef] [PubMed]

Kim, F.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Kuhnert, F. Y.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

Kukhtarev, N. V.

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 79(7), 901–903 (2001).
[CrossRef]

Li, D.

G. Hu and D. Li, “Multiscale phenomena in microfluidics and nanofluidic,” Chem. Eng. Sci. 62(13), 3443–3454 (2007).
[CrossRef]

Lopez, V.

E E. Serrano, V. Lopez, M. Carrascosa, and F. Agullo-Lopez, “Steady-state photorefractive gratings in LiNbO/sub 3/ for strong light modulation depths,” IEEE J. Quantum Electron. 30, 875–880 (1994).
[CrossRef]

Markx, G. H.

R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
[CrossRef] [PubMed]

R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
[CrossRef] [PubMed]

Moore, L. E.

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 79(7), 901–903 (2001).
[CrossRef]

Morar, R.

A. Iuga, R. Morar, A. Samuila, and L. Dascalescu, “Electrostatic separation of metals and plastics from granular industrial wastes,” IEE Proc. Sci. Meas. Technol. 148(2), 47–54 (2001).
[CrossRef]

Negran, T. J.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

Ohta, A. T.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Olsson, E.

L. Eurenius, C. Hägglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle mediated coupling of light into waveguided modes,” Nat. Photonics 2(6), 360–364 (2008).
[CrossRef]

Otten, J.

Pethig, R.

R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
[CrossRef] [PubMed]

R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
[CrossRef] [PubMed]

Pohl, H. A.

H. A. Pohl, “Some effects of nonuniform fields on dielectrics,” J. Appl. Phys. 29(8), 1182 (1958).
[CrossRef]

H. A. Pohl, “The motion and precipitation of suspensoids in divergent electric fields,” J. Appl. Phys. 22(7), 869 (1951).
[CrossRef]

Psaltis, D.

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

Ringhofer, K. H.

Ruiz, B.

P. Vaveliuk, B. Ruiz, and N. Bolognini, “Analysis of the steady-state photorefractive harmonic gratings,” Phys. Rev. B 59(16), 10985–10991 (1999).
[CrossRef]

Samuila, A.

A. Iuga, R. Morar, A. Samuila, and L. Dascalescu, “Electrostatic separation of metals and plastics from granular industrial wastes,” IEE Proc. Sci. Meas. Technol. 148(2), 47–54 (2001).
[CrossRef]

Sarkisov, S. S.

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 79(7), 901–903 (2001).
[CrossRef]

Serrano, E E.

E E. Serrano, V. Lopez, M. Carrascosa, and F. Agullo-Lopez, “Steady-state photorefractive gratings in LiNbO/sub 3/ for strong light modulation depths,” IEEE J. Quantum Electron. 30, 875–880 (1994).
[CrossRef]

Shen, X.

Smith, C. C.

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 79(7), 901–903 (2001).
[CrossRef]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Enhanced dipole–dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998).
[CrossRef]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[CrossRef]

Sun, Y.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Tao, A.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Vachss, F.

Vaveliuk, P.

P. Vaveliuk, B. Ruiz, and N. Bolognini, “Analysis of the steady-state photorefractive harmonic gratings,” Phys. Rev. B 59(16), 10985–10991 (1999).
[CrossRef]

von der Linde, D.

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[CrossRef]

Vykoukal, J.

P. R. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002).
[CrossRef] [PubMed]

Wang, R.

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

Wu, M. C.

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Xia, Y.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Yang, P.

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Yeh, P.

Yi, X.

Zhao, J.

Appl. Phys. B (1)

K. Buse, “Light induced charge transport processes in photorefractive crystals I: Models and experimental methods,” Appl. Phys. B 64(3), 273–291 (1997).
[CrossRef]

Appl. Phys. Lett. (4)

A. M. Glass, D. von der Linde, and T. J. Negran, “High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3,” Appl. Phys. Lett. 25(4), 233–235 (1974).
[CrossRef]

H. R. Stuart and D. G. Hall, “Absorption enhancement in silicon-on-insulator waveguides using metal island films,” Appl. Phys. Lett. 69(16), 2327–2329 (1996).
[CrossRef]

S. S. Sarkisov, M. J. Curley, N. V. Kukhtarev, A. Fields, G. Adamovsky, C. C. Smith, and L. E. Moore, “Holographic surface gratings in iron-doped lithium niobate,” Appl. Phys. Lett. 79(7), 901–903 (2001).
[CrossRef]

H. A. Eggert, F. Y. Kuhnert, K. Buse, J. R. Adleman, and D. Psaltis, “Trapping of dielectric particles with light-induced space-charge fields,” Appl. Phys. Lett. 90(24), 241909 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

Chem. Eng. Sci. (1)

G. Hu and D. Li, “Multiscale phenomena in microfluidics and nanofluidic,” Chem. Eng. Sci. 62(13), 3443–3454 (2007).
[CrossRef]

Electrophoresis (1)

P. R. Gascoyne and J. Vykoukal, “Particle separation by dielectrophoresis,” Electrophoresis 23(13), 1973–1983 (2002).
[CrossRef] [PubMed]

IEE Proc. Sci. Meas. Technol. (1)

A. Iuga, R. Morar, A. Samuila, and L. Dascalescu, “Electrostatic separation of metals and plastics from granular industrial wastes,” IEE Proc. Sci. Meas. Technol. 148(2), 47–54 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

E E. Serrano, V. Lopez, M. Carrascosa, and F. Agullo-Lopez, “Steady-state photorefractive gratings in LiNbO/sub 3/ for strong light modulation depths,” IEEE J. Quantum Electron. 30, 875–880 (1994).
[CrossRef]

J. Appl. Phys. (2)

H. A. Pohl, “The motion and precipitation of suspensoids in divergent electric fields,” J. Appl. Phys. 22(7), 869 (1951).
[CrossRef]

H. A. Pohl, “Some effects of nonuniform fields on dielectrics,” J. Appl. Phys. 29(8), 1182 (1958).
[CrossRef]

J. Colloid Interface Sci. (1)

M. P. Hughes, “Dielectrophoretic behavior of latex nanospheres: low-frequency dispersion,” J. Colloid Interface Sci. 250(2), 291–294 (2002).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

P. M. Johansen, “Photorefractive space-charge field formation: linear and nonlinear effects,” J. Opt. A, Pure Appl. Opt. 5(6), S398–S415 (2003).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nano Lett. (1)

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He, Y. Sun, Y. Xia, and P. Yang, “Langmuir-Blodgett silver nanowire monolayers for molecular sensing using surface-enhanced Raman spectroscopy,” Nano Lett. 3(9), 1229–1233 (2003).
[CrossRef]

Nat. Photonics (1)

L. Eurenius, C. Hägglund, E. Olsson, B. Kasemo, and D. Chakarov, “Grating formation by metal-nanoparticle mediated coupling of light into waveguided modes,” Nat. Photonics 2(6), 360–364 (2008).
[CrossRef]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003).
[CrossRef] [PubMed]

P. Y. Chiou, A. T. Ohta, and M. C. Wu, “Massively parallel manipulation of single cells and microparticles using optical images,” Nature 436(7049), 370–372 (2005).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. B (1)

P. Vaveliuk, B. Ruiz, and N. Bolognini, “Analysis of the steady-state photorefractive harmonic gratings,” Phys. Rev. B 59(16), 10985–10991 (1999).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

B. Khusid and A. Acrivos, “Effects of interparticle electric interactions on dielectrophoresis in colloidal suspensions,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 54(5), 5428–5435 (1996).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

H. R. Stuart and D. G. Hall, “Enhanced dipole–dipole interaction between elementary radiators near a surface,” Phys. Rev. Lett. 80(25), 5663–5666 (1998).
[CrossRef]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75(9), 2787–2809 (2004).
[CrossRef]

Trends Biotechnol. (2)

R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
[CrossRef] [PubMed]

R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol. 15(10), 426–432 (1997).
[CrossRef] [PubMed]

Other (1)

P. Yeh, “Introduction to photorefractive nonlinear optics,” (Wiley, New York, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Charged aluminum particles were trapped by electrophoretic forces. The period of particle grating was 250 μm, which was the same as that of light pattern.

Fig. 2
Fig. 2

Negatively charged carbon particles and positively charged aluminum particles lined alternately. The black large particles were carbon particles, and the gray small particles were aluminum powder. The period of each particle grating was 400 μm, which was the same as that of light pattern.

Fig. 3
Fig. 3

Uncharged silver particles were trapped by dielectrophoretic forces. The period of light pattern was 540 μm. The particle strips were non-uniformly distributed (252 μm and 288 μm pitches, alternatively) due to high light modulation, which could be considered as particle grating with average fringe spacing 270 μm resulting from dielectrophoresis.

Fig. 4
Fig. 4

The simple sketch map shows the profile of space-charge field (upper line) and dielectrophoretic (DEP) force (lower line) with the spatial coordinate in one period, respectively. The arrowheads indicate the direction of DEP forces.

Fig. 5
Fig. 5

The temporal evolution of the distribution of the silver particles strips. The period of light pattern was 600 μm and the time interval between two adjacent pictures was about 30 seconds. A transition from dielectrophoresis to electrophoresis was observed.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Felec=qE+(m)E+16(Q:E)+
FDEP=2πεmr3αE2

Metrics