Abstract

We report on the experimental and theoretical study of the resonant eigenmodes of spiral-type terahertz antennas. The analysis is carried out for a varying number of spiral windings. For larger numbers the structure possesses a self-complementary property which allows the application of the Mushiake principle predicting that the impedance of such structures is half the impedance of free space. This permits to observe an equal and frequency independent reflection and transmission coefficient. This property makes the spiral-type terahertz antenna not only a fascinating example of a medium supporting strong resonances in the long wavelength limit but also a medium which can be easily and reasonably homogenized at higher frequencies. This is in stark contrast to most of the existing metamaterials.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
    [CrossRef] [PubMed]
  2. R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354-1356 (1997).
    [CrossRef]
  3. L. Novotny, B. Hecht, Principles of Nano-Optics, 1st ed., (Cambridge University Press, 2006).
  4. R. Singh, E. Smirnova, A. J. Taylor, J. F. OHara, and W. Zhang, "Optically thin terahertz metamaterials," Opt. Express 16, 6537-6543 (2008).
    [CrossRef]
  5. T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
    [CrossRef]
  6. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
    [CrossRef]
  7. P. Bharadwaj and L. Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express 15, 14266-14274 (2007).
    [CrossRef] [PubMed]
  8. N. Engheta, R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Aspects, 1st ed. (Wiley & Sons, 2006)
  9. T. Zentgraf, J. Dorfm¨uller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, "Amplitude- and phase-resolved optical near fields of split-ring resonator based metamaterials," Opt. Lett. 33, 848-850 (2008).
    [CrossRef] [PubMed]
  10. D. J. Cho, F. Wang, X. Zhang, and Y. Ron Shen, "Contribution of the electric quadrupole resonance in optical metamaterials," Phys. Rev. B 78, 121101(R) (2008).
    [CrossRef]
  11. D. Seetharamdoo, R. Sauleau, K. Mahdjoubi, and A.-C. Tarot, "Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity," J. Appl. Phys 98, 063505 (2005).
  12. C. Rockstuhl, C. Menzel, T. Paul, T. Pertsch, and F. Lederer, "Light propagation in a fishnet metamaterial," Phys. Rev. B 78, 155102 (2008).
    [CrossRef]
  13. E. Prodan and P. Nordlander, "Plasmon hybridization in spherical nanoparticles," J. Chem. Phys. 120, 5444-5454 (2007).
    [CrossRef]
  14. N. Liu, S. Kaiser, and H. Giessen, "Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules," Adv. Matter. 20, 4521-4525 (2008).
    [CrossRef]
  15. M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent Control of Femtosecond Energy Localization in Nanosystems," Phys. Rev. Lett. 88, 067402 (2002).
    [CrossRef] [PubMed]
  16. T. Brixner, F. J. Garcıa de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, "Ultrafast adaptive optical near-field control," Phys. Rev. B 73, 125437 (2006).
    [CrossRef]
  17. Y. Mushiake, Self- Complementary Antennas. Principle of Self- Complementarity for Constant Impedance, 1st ed., (Springer, 1996)
  18. Y. Mushiake, "Self-complementary antennas," IEEE Antennas and Propagation Magazine,  34, 23-29 (1992).
    [CrossRef]
  19. K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
    [CrossRef]
  20. J. F. OHara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, "Thin film sensing with planar terahertz metamaterials:sensitivity and limitations," Opt. Express 16, 1786-1795 (2008).
    [CrossRef]
  21. D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, "Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors," J. Opt. Soc. Am. B 7, 2006-2015 (1990).
    [CrossRef]
  22. R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, "Coupling between a dark and a bright eigenmode in a terahertz metamaterial," Phys. Rev. B 79, 085111 (2009).
    [CrossRef]
  23. A. K. Azad, J. Dai, and W. Zhang, "Transmission properties of terahertz pulses through subwavelength double split ring resonators," Opt. Lett. 31, 634 636 (2006).
    [CrossRef]
  24. New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997).
    [CrossRef]
  25. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099-1119 (1983).
    [CrossRef] [PubMed]
  26. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
    [CrossRef] [PubMed]
  27. T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234 (2003).
    [CrossRef]
  28. C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, "Retrieving effective parameters for quasiplanar chiral metamaterials," Appl. Phys. Lett. 93, 233106 (2008).
    [CrossRef]
  29. R. Esteban, R. Vogelgesang, J. Dorfm¨uller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, "Direct near-field optical observation of higher order plasmonic resonances," Nano Letters 8, 3155-3159 (2008).
    [CrossRef] [PubMed]

2009 (1)

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, "Coupling between a dark and a bright eigenmode in a terahertz metamaterial," Phys. Rev. B 79, 085111 (2009).
[CrossRef]

2008 (8)

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, "Retrieving effective parameters for quasiplanar chiral metamaterials," Appl. Phys. Lett. 93, 233106 (2008).
[CrossRef]

R. Esteban, R. Vogelgesang, J. Dorfm¨uller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, "Direct near-field optical observation of higher order plasmonic resonances," Nano Letters 8, 3155-3159 (2008).
[CrossRef] [PubMed]

R. Singh, E. Smirnova, A. J. Taylor, J. F. OHara, and W. Zhang, "Optically thin terahertz metamaterials," Opt. Express 16, 6537-6543 (2008).
[CrossRef]

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

T. Zentgraf, J. Dorfm¨uller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, "Amplitude- and phase-resolved optical near fields of split-ring resonator based metamaterials," Opt. Lett. 33, 848-850 (2008).
[CrossRef] [PubMed]

C. Rockstuhl, C. Menzel, T. Paul, T. Pertsch, and F. Lederer, "Light propagation in a fishnet metamaterial," Phys. Rev. B 78, 155102 (2008).
[CrossRef]

N. Liu, S. Kaiser, and H. Giessen, "Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules," Adv. Matter. 20, 4521-4525 (2008).
[CrossRef]

J. F. OHara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, "Thin film sensing with planar terahertz metamaterials:sensitivity and limitations," Opt. Express 16, 1786-1795 (2008).
[CrossRef]

2007 (2)

P. Bharadwaj and L. Novotny, "Spectral dependence of single molecule fluorescence enhancement," Opt. Express 15, 14266-14274 (2007).
[CrossRef] [PubMed]

E. Prodan and P. Nordlander, "Plasmon hybridization in spherical nanoparticles," J. Chem. Phys. 120, 5444-5454 (2007).
[CrossRef]

2006 (2)

T. Brixner, F. J. Garcıa de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, "Ultrafast adaptive optical near-field control," Phys. Rev. B 73, 125437 (2006).
[CrossRef]

A. K. Azad, J. Dai, and W. Zhang, "Transmission properties of terahertz pulses through subwavelength double split ring resonators," Opt. Lett. 31, 634 636 (2006).
[CrossRef]

2005 (2)

D. Seetharamdoo, R. Sauleau, K. Mahdjoubi, and A.-C. Tarot, "Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity," J. Appl. Phys 98, 063505 (2005).

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

2003 (3)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234 (2003).
[CrossRef]

2002 (1)

M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent Control of Femtosecond Energy Localization in Nanosystems," Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

1997 (2)

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

New formulation of the Fourier modal method for crossed surface-relief gratings," J. Opt. Soc. Am. A 14, 2758-2767 (1997).
[CrossRef]

1995 (1)

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
[CrossRef]

1992 (1)

Y. Mushiake, "Self-complementary antennas," IEEE Antennas and Propagation Magazine,  34, 23-29 (1992).
[CrossRef]

1990 (1)

1983 (1)

Abul,

A. K. Azad, J. Dai, and W. Zhang, "Transmission properties of terahertz pulses through subwavelength double split ring resonators," Opt. Lett. 31, 634 636 (2006).
[CrossRef]

Alexander, R. W.

Bagnall, D. M.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bergman, D. J.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent Control of Femtosecond Energy Localization in Nanosystems," Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

Bharadwaj, P.

Brixner, T.

T. Brixner, F. J. Garcıa de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, "Ultrafast adaptive optical near-field control," Phys. Rev. B 73, 125437 (2006).
[CrossRef]

Brown, E. R.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
[CrossRef]

Coles, H. J.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

DiNatale, W. F.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
[CrossRef]

Dmitriev, A.

R. Esteban, R. Vogelgesang, J. Dorfm¨uller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, "Direct near-field optical observation of higher order plasmonic resonances," Nano Letters 8, 3155-3159 (2008).
[CrossRef] [PubMed]

Dorfm¨uller, J.

R. Esteban, R. Vogelgesang, J. Dorfm¨uller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, "Direct near-field optical observation of higher order plasmonic resonances," Nano Letters 8, 3155-3159 (2008).
[CrossRef] [PubMed]

T. Zentgraf, J. Dorfm¨uller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, "Amplitude- and phase-resolved optical near fields of split-ring resonator based metamaterials," Opt. Lett. 33, 848-850 (2008).
[CrossRef] [PubMed]

Eisler, H.-J.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Esteban, R.

R. Esteban, R. Vogelgesang, J. Dorfm¨uller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, "Direct near-field optical observation of higher order plasmonic resonances," Nano Letters 8, 3155-3159 (2008).
[CrossRef] [PubMed]

Etrich, C.

R. Esteban, R. Vogelgesang, J. Dorfm¨uller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, "Direct near-field optical observation of higher order plasmonic resonances," Nano Letters 8, 3155-3159 (2008).
[CrossRef] [PubMed]

T. Zentgraf, J. Dorfm¨uller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, "Amplitude- and phase-resolved optical near fields of split-ring resonator based metamaterials," Opt. Lett. 33, 848-850 (2008).
[CrossRef] [PubMed]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent Control of Femtosecond Energy Localization in Nanosystems," Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

Fattinger, Ch.

Garcia de Abajo, F. J.

T. Brixner, F. J. Garcıa de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, "Ultrafast adaptive optical near-field control," Phys. Rev. B 73, 125437 (2006).
[CrossRef]

Giessen, H.

Grischkowsky, D.

Grober, R. D.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

Hecht, B.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Jefimovs, K.

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234 (2003).
[CrossRef]

Kaiser, S.

N. Liu, S. Kaiser, and H. Giessen, "Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules," Adv. Matter. 20, 4521-4525 (2008).
[CrossRef]

Keiding, S.

Kern, K.

T. Zentgraf, J. Dorfm¨uller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, "Amplitude- and phase-resolved optical near fields of split-ring resonator based metamaterials," Opt. Lett. 33, 848-850 (2008).
[CrossRef] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfm¨uller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, "Direct near-field optical observation of higher order plasmonic resonances," Nano Letters 8, 3155-3159 (2008).
[CrossRef] [PubMed]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Lederer, F.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, "Coupling between a dark and a bright eigenmode in a terahertz metamaterial," Phys. Rev. B 79, 085111 (2009).
[CrossRef]

C. Rockstuhl, C. Menzel, T. Paul, T. Pertsch, and F. Lederer, "Light propagation in a fishnet metamaterial," Phys. Rev. B 78, 155102 (2008).
[CrossRef]

T. Zentgraf, J. Dorfm¨uller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, "Amplitude- and phase-resolved optical near fields of split-ring resonator based metamaterials," Opt. Lett. 33, 848-850 (2008).
[CrossRef] [PubMed]

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, "Retrieving effective parameters for quasiplanar chiral metamaterials," Appl. Phys. Lett. 93, 233106 (2008).
[CrossRef]

Li, L.

Liu, N.

N. Liu, S. Kaiser, and H. Giessen, "Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules," Adv. Matter. 20, 4521-4525 (2008).
[CrossRef]

Long, L. L.

Lyszczarz, T. M.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
[CrossRef]

Mahdjoubi, K.

D. Seetharamdoo, R. Sauleau, K. Mahdjoubi, and A.-C. Tarot, "Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity," J. Appl. Phys 98, 063505 (2005).

Martin, O. J. F.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

McIntosh, K. A.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
[CrossRef]

McMahon, O. B.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
[CrossRef]

Menzel, C.

C. Rockstuhl, C. Menzel, T. Paul, T. Pertsch, and F. Lederer, "Light propagation in a fishnet metamaterial," Phys. Rev. B 78, 155102 (2008).
[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, "Retrieving effective parameters for quasiplanar chiral metamaterials," Appl. Phys. Lett. 93, 233106 (2008).
[CrossRef]

Muhlschlegel, P.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Mushiake, Y.

Y. Mushiake, "Self-complementary antennas," IEEE Antennas and Propagation Magazine,  34, 23-29 (1992).
[CrossRef]

Nichols, K. B.

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
[CrossRef]

Nordlander, P.

E. Prodan and P. Nordlander, "Plasmon hybridization in spherical nanoparticles," J. Chem. Phys. 120, 5444-5454 (2007).
[CrossRef]

Novotny, L.

Ordal, M. A.

Papakostas, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Paul, T.

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, "Retrieving effective parameters for quasiplanar chiral metamaterials," Appl. Phys. Lett. 93, 233106 (2008).
[CrossRef]

C. Rockstuhl, C. Menzel, T. Paul, T. Pertsch, and F. Lederer, "Light propagation in a fishnet metamaterial," Phys. Rev. B 78, 155102 (2008).
[CrossRef]

Pertsch, T.

Pfeiffer, W.

T. Brixner, F. J. Garcıa de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, "Ultrafast adaptive optical near-field control," Phys. Rev. B 73, 125437 (2006).
[CrossRef]

Pohl, D. W.

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Potts, A.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Prober, D. E.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

Prodan, E.

E. Prodan and P. Nordlander, "Plasmon hybridization in spherical nanoparticles," J. Chem. Phys. 120, 5444-5454 (2007).
[CrossRef]

Prosvirnin, S. L.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Rockstuhl, C.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, "Coupling between a dark and a bright eigenmode in a terahertz metamaterial," Phys. Rev. B 79, 085111 (2009).
[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, "Retrieving effective parameters for quasiplanar chiral metamaterials," Appl. Phys. Lett. 93, 233106 (2008).
[CrossRef]

R. Esteban, R. Vogelgesang, J. Dorfm¨uller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, "Direct near-field optical observation of higher order plasmonic resonances," Nano Letters 8, 3155-3159 (2008).
[CrossRef] [PubMed]

T. Zentgraf, J. Dorfm¨uller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, "Amplitude- and phase-resolved optical near fields of split-ring resonator based metamaterials," Opt. Lett. 33, 848-850 (2008).
[CrossRef] [PubMed]

C. Rockstuhl, C. Menzel, T. Paul, T. Pertsch, and F. Lederer, "Light propagation in a fishnet metamaterial," Phys. Rev. B 78, 155102 (2008).
[CrossRef]

Sauleau, R.

D. Seetharamdoo, R. Sauleau, K. Mahdjoubi, and A.-C. Tarot, "Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity," J. Appl. Phys 98, 063505 (2005).

Schneider, J.

T. Brixner, F. J. Garcıa de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, "Ultrafast adaptive optical near-field control," Phys. Rev. B 73, 125437 (2006).
[CrossRef]

Schoelkopf, R. J.

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

Seetharamdoo, D.

D. Seetharamdoo, R. Sauleau, K. Mahdjoubi, and A.-C. Tarot, "Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity," J. Appl. Phys 98, 063505 (2005).

Segerink, F. B.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

Singh, R.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, "Coupling between a dark and a bright eigenmode in a terahertz metamaterial," Phys. Rev. B 79, 085111 (2009).
[CrossRef]

R. Singh, E. Smirnova, A. J. Taylor, J. F. OHara, and W. Zhang, "Optically thin terahertz metamaterials," Opt. Express 16, 6537-6543 (2008).
[CrossRef]

Smirnova, E.

Spindler, C.

T. Brixner, F. J. Garcıa de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, "Ultrafast adaptive optical near-field control," Phys. Rev. B 73, 125437 (2006).
[CrossRef]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

Stockman, M. I.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent Control of Femtosecond Energy Localization in Nanosystems," Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

Svirko, Y.

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234 (2003).
[CrossRef]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

Tarot, A.-C.

D. Seetharamdoo, R. Sauleau, K. Mahdjoubi, and A.-C. Tarot, "Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity," J. Appl. Phys 98, 063505 (2005).

Taylor, A. J.

Turunen, J.

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234 (2003).
[CrossRef]

Vahimaa, P.

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234 (2003).
[CrossRef]

Vallius, T.

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234 (2003).
[CrossRef]

van Exter, M.

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

Vogelgesang, R.

T. Zentgraf, J. Dorfm¨uller, C. Rockstuhl, C. Etrich, R. Vogelgesang, K. Kern, T. Pertsch, F. Lederer, and H. Giessen, "Amplitude- and phase-resolved optical near fields of split-ring resonator based metamaterials," Opt. Lett. 33, 848-850 (2008).
[CrossRef] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfm¨uller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, "Direct near-field optical observation of higher order plasmonic resonances," Nano Letters 8, 3155-3159 (2008).
[CrossRef] [PubMed]

Ward, C. A.

Zentgraf, T.

Zhang, W.

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, "Coupling between a dark and a bright eigenmode in a terahertz metamaterial," Phys. Rev. B 79, 085111 (2009).
[CrossRef]

Zheludev, N. I.

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

Adv. Matter. (1)

N. Liu, S. Kaiser, and H. Giessen, "Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules," Adv. Matter. 20, 4521-4525 (2008).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

K. A. McIntosh, E. R. Brown, K. B. Nichols, O. B. McMahon, W. F. DiNatale, and T. M. Lyszczarz, "Terahertz photomixing with diode lasers in low-temperature-grown GaAs," Appl. Phys. Lett. 67, 3844-3846 (1995).
[CrossRef]

T. Vallius, K. Jefimovs, J. Turunen, P. Vahimaa, and Y. Svirko, "Optical activity in subwavelength-period arrays of chiral metallic particles," Appl. Phys. Lett. 83, 234 (2003).
[CrossRef]

C. Menzel, C. Rockstuhl, T. Paul, and F. Lederer, "Retrieving effective parameters for quasiplanar chiral metamaterials," Appl. Phys. Lett. 93, 233106 (2008).
[CrossRef]

R. D. Grober, R. J. Schoelkopf, and D. E. Prober, "Optical antenna: Towards a unity efficiency near-field optical probe," Appl. Phys. Lett. 70, 1354-1356 (1997).
[CrossRef]

IEEE Antennas and Propagation Magazine (1)

Y. Mushiake, "Self-complementary antennas," IEEE Antennas and Propagation Magazine,  34, 23-29 (1992).
[CrossRef]

J. Appl. Phys (1)

D. Seetharamdoo, R. Sauleau, K. Mahdjoubi, and A.-C. Tarot, "Effective parameters of resonant negative refractive index metamaterials: Interpretation and validity," J. Appl. Phys 98, 063505 (2005).

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, "Optical antennas: Resonators for local field enhancement," J. Appl. Phys. 94, 4632-4642 (2003).
[CrossRef]

J. Chem. Phys. (1)

E. Prodan and P. Nordlander, "Plasmon hybridization in spherical nanoparticles," J. Chem. Phys. 120, 5444-5454 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nano Letters (1)

R. Esteban, R. Vogelgesang, J. Dorfm¨uller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, "Direct near-field optical observation of higher order plasmonic resonances," Nano Letters 8, 3155-3159 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F. van Hulst, "Optical antennas direct single-molecule emission," Nat. Photonics 2, 234-237 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. B (3)

C. Rockstuhl, C. Menzel, T. Paul, T. Pertsch, and F. Lederer, "Light propagation in a fishnet metamaterial," Phys. Rev. B 78, 155102 (2008).
[CrossRef]

T. Brixner, F. J. Garcıa de Abajo, J. Schneider, C. Spindler, and W. Pfeiffer, "Ultrafast adaptive optical near-field control," Phys. Rev. B 73, 125437 (2006).
[CrossRef]

R. Singh, C. Rockstuhl, F. Lederer, and W. Zhang, "Coupling between a dark and a bright eigenmode in a terahertz metamaterial," Phys. Rev. B 79, 085111 (2009).
[CrossRef]

Phys. Rev. Lett. (2)

A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical Manifestations of Planar Chirality," Phys. Rev. Lett. 90, 107404 (2003).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, "Coherent Control of Femtosecond Energy Localization in Nanosystems," Phys. Rev. Lett. 88, 067402 (2002).
[CrossRef] [PubMed]

Science (1)

P. Muhlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, "Resonant Optical Antennas," Science 308, 1607-1609 (2005).
[CrossRef] [PubMed]

Other (4)

L. Novotny, B. Hecht, Principles of Nano-Optics, 1st ed., (Cambridge University Press, 2006).

D. J. Cho, F. Wang, X. Zhang, and Y. Ron Shen, "Contribution of the electric quadrupole resonance in optical metamaterials," Phys. Rev. B 78, 121101(R) (2008).
[CrossRef]

N. Engheta, R. W. Ziolkowski, Electromagnetic Metamaterials: Physics and Engineering Aspects, 1st ed. (Wiley & Sons, 2006)

Y. Mushiake, Self- Complementary Antennas. Principle of Self- Complementarity for Constant Impedance, 1st ed., (Springer, 1996)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Detailed geometrical parameters at the example of a THz spiral with three windings.

Fig. 2.
Fig. 2.

Microscopic images of fabricated devices of the spiral type metamaterial with different winding numbers n; (a) n=1, (b) n=3, (c) n=4.

Fig. 3.
Fig. 3.

Measured and simulated transmitted complex amplitude through a THz antenna sample comprising spirals with only a single winding where (a) shows the amplitude and (b) the phase. Blue solid and red dashed lines correspond to simulation and to measurement, respectively. The amplitude of the electric field component normal to the surface shortly above the structure is shown at the resonance frequency of 1.9 THz in (c). Polarization of the incident field is set to be in the y-direction.

Fig. 4.
Fig. 4.

Measured and simulated transmitted complex amplitude through a THz antenna sample composed of spirals with three windings where (a) shows the amplitude and (b) the phase, respectively. Blue solid and red dashed lines correspond to simulation and to measurement, respectively. For selected resonance frequencies, indicated by Roman numerals in (a), the amplitude of the electric field component normal to the surface shortly above the structure is shown in (c). Polarization of the incident field is set to be in the y-direction.

Fig. 5.
Fig. 5.

Measured and simulated transmitted complex amplitude through a THz antenna sample composed of spirals with four windings where (a) shows the amplitude and (b) the phase, respectively. Blue solid and red dashed lines correspond to simulation and to measurement, respectively. For selected resonance frequencies, indicated by Roman numerals in (a), the amplitude of the electric field component normal to the surface shortly above the structure is shown in (c). Polarization of the incident field is set to be in the y-direction.

Fig. 6.
Fig. 6.

Simulated transmitted (blue solid line) and reflected (red dashed) intensity diffracted into the lowest order (00). Unity minus the absorbed intensity is shown in addition (green dash-dotted line).

Metrics