Abstract

We study thermal bleaching of photodarkening-induced loss in a 20-µm core diameter, large-mode-area ytterbium-doped silica fiber. Pristine and photodarkened samples are subjected to thermal cycling pulses. Recovery of the photodarkened fiber absorption coefficient initiates at ~350 °C and complete recovery is reached at ~625 °C. However, prior to recovery, the photodarkened fiber exhibits further heat-induced increase of absorption loss. This increase of loss is attributed to both a permanent increase of loss-inducing color centers and a temperature-dependent broadening of the absorption spectrum. Post-irradiation heat-induced formation of color centers suggests the presence of an intermediate energy state in the near-infrared photochemical mechanism for photodarkening.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. J. Koponen, M. J. Söderlund, H. J. Hoffmann, and S. K. T. Tammela, “Measuring photodarkening from single-mode ytterbium doped silica fibers,” Opt. Express 14(24), 11539–11544 (2006).
    [CrossRef] [PubMed]
  2. I. Manek-Hönninger, J. Boullet, T. Cardinal, F. Guillen, M. Podgorski, R. Bello Doua, and F. Salin, “Photodarkening and photobleaching of an ytterbium-doped silica double-clad LMA fiber,” Opt. Express 15(4), 1606–1611 (2007).
    [CrossRef] [PubMed]
  3. B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. De Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” in Fiber Lasers IV: Technology, Systems, and Applications, D. J. Harter, A. Tünnermann, J. Broeng, and C. Headley, Proc. SPIE 6453, 64530H–1-9 (2007).
  4. J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, and J. Koplow, “Photodarkening measurements in large-mode-area fibers,” in Fiber Lasers IV: Technology, Systems, and Applications, D. J. Harter, A. Tünnermann, J. Broeng, and C. Headley, Proc. SPIE 6453, 64531E–1-11 (2007).
  5. A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnow, I. A. Bufetov, and E. M. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” in Conf. Digest of CLEO Europe-EQEC2007, CJ3–1-THU.
  6. J. Koponen, M. Söderlund, H. J. Hoffman, D. A. Kliner, J. P. Koplow, and M. Hotoleanu, “Photodarkening rate in Yb-doped silica fibers,” Appl. Opt. 47(9), 1247–1256 (2008).
    [CrossRef] [PubMed]
  7. S. Jetschke, S. Unger, U. Röpke, and J. Kirchof, “Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power,” Opt. Express 15(22), 14838–14843 (2007).
    [CrossRef] [PubMed]
  8. S. Jetschke and U. Röpke, “Power-law dependence of the photodarkening rate constant on the inversion in Yb doped fibers,” Opt. Lett. 34(1), 109–111 (2009).
    [CrossRef] [PubMed]
  9. J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photodarkening of Yb3+ fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2006, Technical Digest (Optical Society of America, Washington, DC, 2006), CTuQ5.
  10. J. J. Montiel i Ponsoda, M. J. Söderlund, J. Koplow, J. Koponen, A. Iho, and S. Honkanen, “Combined photodarkening and thermal bleaching measurement of an ytterbium-doped fiber,” in proceedings of Fiber Lasers VI: Technology, Systems, and Applications, Denis V. Gapontsev, Dahv A. V. Kliner, Proc. SPIE 7195, 71952D–1-7 (2009).
  11. M. Engholm, L. Norin, and D. Åberg, “Strong UV absorption and visible luminescence in ytterbium-doped aluminosilicate glass under UV excitation,” Opt. Lett. 32(22), 3352–3354 (2007).
    [CrossRef] [PubMed]
  12. M. Engholm and L. Norin, “Preventing photodarkening in ytterbium-doped high power fiber lasers; correlation to the UV-transparency of the core glass,” Opt. Express 16(2), 1260–1268 (2008).
    [CrossRef] [PubMed]

2009

2008

2007

2006

Åberg, D.

Bello Doua, R.

Boullet, J.

Cardinal, T.

Engholm, M.

Guillen, F.

Hoffman, H. J.

Hoffmann, H. J.

Hotoleanu, M.

Jetschke, S.

Kirchof, J.

Kliner, D. A.

Koplow, J. P.

Koponen, J.

Koponen, J. J.

Manek-Hönninger, I.

Norin, L.

Podgorski, M.

Röpke, U.

Salin, F.

Söderlund, M.

Söderlund, M. J.

Tammela, S. K. T.

Unger, S.

Appl. Opt.

Opt. Express

Opt. Lett.

Other

B. Morasse, S. Chatigny, E. Gagnon, C. Hovington, J.-P. Martin, and J.-P. De Sandro, “Low photodarkening single cladding ytterbium fibre amplifier,” in Fiber Lasers IV: Technology, Systems, and Applications, D. J. Harter, A. Tünnermann, J. Broeng, and C. Headley, Proc. SPIE 6453, 64530H–1-9 (2007).

J. Koponen, M. Söderlund, H. J. Hoffman, D. Kliner, and J. Koplow, “Photodarkening measurements in large-mode-area fibers,” in Fiber Lasers IV: Technology, Systems, and Applications, D. J. Harter, A. Tünnermann, J. Broeng, and C. Headley, Proc. SPIE 6453, 64531E–1-11 (2007).

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnow, I. A. Bufetov, and E. M. Dianov, “Photodarkening of aluminosilicate and phosphosilicate Yb-doped fibers,” in Conf. Digest of CLEO Europe-EQEC2007, CJ3–1-THU.

J. Jasapara, M. Andrejco, D. DiGiovanni, and R. Windeler, “Effect of heat and H2 gas on the photodarkening of Yb3+ fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2006, Technical Digest (Optical Society of America, Washington, DC, 2006), CTuQ5.

J. J. Montiel i Ponsoda, M. J. Söderlund, J. Koplow, J. Koponen, A. Iho, and S. Honkanen, “Combined photodarkening and thermal bleaching measurement of an ytterbium-doped fiber,” in proceedings of Fiber Lasers VI: Technology, Systems, and Applications, Denis V. Gapontsev, Dahv A. V. Kliner, Proc. SPIE 7195, 71952D–1-7 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Photodarkening-induced fiber absorption coefficient change Δα at 670 nm (red circles) and 600 nm data converted to the same scale as the 670 nm by dividing by 1.98 (blue squares). Data is fitted using stretched-exponential function with fit parameters indicated next to the respective data. (b) Thermal bleaching (from room temperature to ~650 °C and back) of induced losses.

Fig. 3
Fig. 3

Absorption coefficient change spectra Δα(λ) measured after photodarkening, after thermal cycling (from RT to 325 °C and back), and at 146 °C and 304 °C (after completing the first thermal cycling sequence). Dashed lines show a Gaussian fit to the respective data sets.

Fig. 2
Fig. 2

Absorption coefficient change Δα during thermal cycling between RT and 325 °C, followed by cycle between RT and 650 °C. Heat-induced change of Δα at RT is indicated by an arrow between “start” and second “turning point”.

Fig. 4
Fig. 4

Temperature dependence of Δα measured at 612 nm, 635 nm and 670 nm (after completing the first thermal cycling sequence). Secondary y-axis plots the full width half maximum (FWHM) of the loss peak centered at 430 nm.

Tables (1)

Tables Icon

Table 1 Temperature dependence of absorption coefficient due to spectral loss broadening.

Metrics