Abstract

Phosphorus co-doping is known to reduce clustering levels of rare earth ions in silica hosts. In this paper, ytterbium-doped silica fibers with ~8.9wt% Yb2O3, up to ~4700dB/m peak core absorption at 976nm, and low photo-darkening are demonstrated using high phosphorus co-doping. Measured gain as high as ~7dB/cm is demonstrated in the fiber.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann, "Single-mode excitation of multimode fibers with ultrashort pulses," Opt. Lett. 23, 52-54 (1998).
    [CrossRef]
  2. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakobsen, "High-power rod-type photonic crystal fiber laser," Opt. Express 13,1055-1058 (2005).
    [CrossRef] [PubMed]
  3. C. D. Brooks and F. Di Teodoro, "Multi-megawatt peak power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rod-like photonic crystal fiber amplifier," Appl. Phys. Lett. 89, 111119-111121 (2006).
    [CrossRef]
  4. L. Dong, T. W. Wu, H. A. McKay, L. B. Fu, J. Li, and H. G. Winful, "All-Glass Large-Core Leakage Channel Fibers," IEEE J. Sel. Top. Quantum Electron. 15, 47-53 (2009).
    [CrossRef]
  5. S. Ramachandran, J. W. Nicholson, S. Ghalmi, M. F. Yan, P. Wisk, E. Monberg, and F. V. Dimarcello, "Light propagation with ultra large modal areas in optical fibers," Opt. Lett. 31, 1797-1799 (2006).
    [CrossRef] [PubMed]
  6. F. Di. Teodoro, J. P. Koplow, S. W. Moore, and D. A. V. Kliner, "Diffraction-limited, 300kW peak-power pulses from a coiled multimode amplifier," Opt. Lett. 27, 518-520 (2002).
    [CrossRef]
  7. R. Sims, V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, A.G. James, J. Ballato and A.E. Siegman, "Diode-pumped very large core, gain guided, index anti-guided single mode fiber laser," Advanced Solid State Photonics, paper WB3, Denver, February 2009.
  8. A. V. Kir'yanov, Y. O. Barmenkov, I. L. Martinex, A. S. Kurkov, and E. M. Dianov, "Cooperative luminescence and absorption in ytterbium-doped silica fiber and the fiber nonlinear transmission coefficient at 980nm with a regard to the ytterbium ion-pairs' effect," Opt. Express 14, 3981-3992 (2006).
    [CrossRef] [PubMed]
  9. J. J. Koponen, M. J. Söderlund and H. J. Hoffman, "Measuring photodarkening from single-mode ytterbium doped silica fibers," Opt. Express 14, 11539-11544 (2006).
    [CrossRef] [PubMed]
  10. S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, "Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power," Opt. Express 15, 14838-14843 (2007).
    [CrossRef] [PubMed]
  11. Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer and S. Jiang, "Measurements of high photodarkening resistance in heavily Yb3+ doped phosphate fibers," Electron. Lett. 44, 14-16 (2008).
    [CrossRef]
  12. Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, "20 W single-mode Yb3+-doped phosphate fiber laser," Opt. Lett. 31, 3255-3257 (2006).
    [CrossRef] [PubMed]
  13. A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, "Photodarkening of aluminosilicate and phoshosilicate Yb-doped fibers," CLEO Europe, paper CJ5, 2007.
  14. S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, "Efficient Yb laser fibers with low photodarkening by optimization of the core composition," Opt. Express. 16, 15540-15545 (2008).
    [CrossRef] [PubMed]
  15. H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-13 (1995).
    [CrossRef]
  16. R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
    [CrossRef]
  17. X. Peng and L. Dong, "Temperature dependence of ytterbium-doped fiber amplifier," J. Opt. Soc. Am. B,  25, 126-130 (2008).
    [CrossRef]
  18. I. Hartl, H. A. McKay, R. Thapa, B. K. Thoimas, A. Ruehl, L. Dong and M. E. Fermann, "Fully stabilized GHz Yb-fiber laser frequency comb," Advanced Solid State Photonics, post-deadline paper MF9, Denver, February 2009.
  19. L. B. Fu, H. A. McKay, S. Suzuki, M. Ohta, and L. Dong, "All-Glass PM Leakage Channel Fibers with up to 80µm Core Diameters for High Gain and High Peak Power Fiber Amplifiers," Advanced Solid State Photonics, post-deadline paper MF3, Denver, February 2009.

2009 (1)

L. Dong, T. W. Wu, H. A. McKay, L. B. Fu, J. Li, and H. G. Winful, "All-Glass Large-Core Leakage Channel Fibers," IEEE J. Sel. Top. Quantum Electron. 15, 47-53 (2009).
[CrossRef]

2008 (3)

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer and S. Jiang, "Measurements of high photodarkening resistance in heavily Yb3+ doped phosphate fibers," Electron. Lett. 44, 14-16 (2008).
[CrossRef]

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, "Efficient Yb laser fibers with low photodarkening by optimization of the core composition," Opt. Express. 16, 15540-15545 (2008).
[CrossRef] [PubMed]

X. Peng and L. Dong, "Temperature dependence of ytterbium-doped fiber amplifier," J. Opt. Soc. Am. B,  25, 126-130 (2008).
[CrossRef]

2007 (1)

2006 (5)

2005 (1)

2002 (1)

1998 (1)

1997 (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
[CrossRef]

1995 (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-13 (1995).
[CrossRef]

Barber, P. R.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-13 (1995).
[CrossRef]

Barmenkov, Y. O.

Broeng, J.

Brooks, C. D.

C. D. Brooks and F. Di Teodoro, "Multi-megawatt peak power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rod-like photonic crystal fiber amplifier," Appl. Phys. Lett. 89, 111119-111121 (2006).
[CrossRef]

Byer, R. L.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer and S. Jiang, "Measurements of high photodarkening resistance in heavily Yb3+ doped phosphate fibers," Electron. Lett. 44, 14-16 (2008).
[CrossRef]

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, "20 W single-mode Yb3+-doped phosphate fiber laser," Opt. Lett. 31, 3255-3257 (2006).
[CrossRef] [PubMed]

Carman, R. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-13 (1995).
[CrossRef]

Dawes, J. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-13 (1995).
[CrossRef]

Deguil-Robin, N.

Di, F.

Di Teodoro, F.

C. D. Brooks and F. Di Teodoro, "Multi-megawatt peak power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rod-like photonic crystal fiber amplifier," Appl. Phys. Lett. 89, 111119-111121 (2006).
[CrossRef]

Dianov, E. M.

Digonnet, M. J. F.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer and S. Jiang, "Measurements of high photodarkening resistance in heavily Yb3+ doped phosphate fibers," Electron. Lett. 44, 14-16 (2008).
[CrossRef]

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, "20 W single-mode Yb3+-doped phosphate fiber laser," Opt. Lett. 31, 3255-3257 (2006).
[CrossRef] [PubMed]

Dimarcello, F. V.

Dong, L.

L. Dong, T. W. Wu, H. A. McKay, L. B. Fu, J. Li, and H. G. Winful, "All-Glass Large-Core Leakage Channel Fibers," IEEE J. Sel. Top. Quantum Electron. 15, 47-53 (2009).
[CrossRef]

X. Peng and L. Dong, "Temperature dependence of ytterbium-doped fiber amplifier," J. Opt. Soc. Am. B,  25, 126-130 (2008).
[CrossRef]

Fermann, M. E.

Fu, L. B.

L. Dong, T. W. Wu, H. A. McKay, L. B. Fu, J. Li, and H. G. Winful, "All-Glass Large-Core Leakage Channel Fibers," IEEE J. Sel. Top. Quantum Electron. 15, 47-53 (2009).
[CrossRef]

Ghalmi, S.

Hanna, D. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-13 (1995).
[CrossRef]

Hoffman, H. J.

Jakobsen, C.

Jetschke, S.

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, "Efficient Yb laser fibers with low photodarkening by optimization of the core composition," Opt. Express. 16, 15540-15545 (2008).
[CrossRef] [PubMed]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, "Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power," Opt. Express 15, 14838-14843 (2007).
[CrossRef] [PubMed]

Jiang, S.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer and S. Jiang, "Measurements of high photodarkening resistance in heavily Yb3+ doped phosphate fibers," Electron. Lett. 44, 14-16 (2008).
[CrossRef]

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, "20 W single-mode Yb3+-doped phosphate fiber laser," Opt. Lett. 31, 3255-3257 (2006).
[CrossRef] [PubMed]

Kirchhof, J.

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, "Efficient Yb laser fibers with low photodarkening by optimization of the core composition," Opt. Express. 16, 15540-15545 (2008).
[CrossRef] [PubMed]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, "Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power," Opt. Express 15, 14838-14843 (2007).
[CrossRef] [PubMed]

Kir'yanov, A. V.

Koponen, J. J.

Kurkov, A. S.

Lee, Y. W.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer and S. Jiang, "Measurements of high photodarkening resistance in heavily Yb3+ doped phosphate fibers," Electron. Lett. 44, 14-16 (2008).
[CrossRef]

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, "20 W single-mode Yb3+-doped phosphate fiber laser," Opt. Lett. 31, 3255-3257 (2006).
[CrossRef] [PubMed]

Leich, M.

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, "Efficient Yb laser fibers with low photodarkening by optimization of the core composition," Opt. Express. 16, 15540-15545 (2008).
[CrossRef] [PubMed]

Li, J.

L. Dong, T. W. Wu, H. A. McKay, L. B. Fu, J. Li, and H. G. Winful, "All-Glass Large-Core Leakage Channel Fibers," IEEE J. Sel. Top. Quantum Electron. 15, 47-53 (2009).
[CrossRef]

Liem, A.

Limpert, J.

Mackechnie, C. J.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-13 (1995).
[CrossRef]

Manek-Hönninger, I.

Martinex, I. L.

McKay, H. A.

L. Dong, T. W. Wu, H. A. McKay, L. B. Fu, J. Li, and H. G. Winful, "All-Glass Large-Core Leakage Channel Fibers," IEEE J. Sel. Top. Quantum Electron. 15, 47-53 (2009).
[CrossRef]

Monberg, E.

Nicholson, J. W.

Nilsson, J.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
[CrossRef]

Nolte, S.

Paschotta, R.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
[CrossRef]

Pask, H. M.

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-13 (1995).
[CrossRef]

Peng, X.

Petersson, A.

Ramachandran, S.

Röpke, U.

Röser, F.

Salin, F.

Schreiber, T.

Schwuchow, A.

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, "Efficient Yb laser fibers with low photodarkening by optimization of the core composition," Opt. Express. 16, 15540-15545 (2008).
[CrossRef] [PubMed]

Sinha, S.

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer and S. Jiang, "Measurements of high photodarkening resistance in heavily Yb3+ doped phosphate fibers," Electron. Lett. 44, 14-16 (2008).
[CrossRef]

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer, and S. Jiang, "20 W single-mode Yb3+-doped phosphate fiber laser," Opt. Lett. 31, 3255-3257 (2006).
[CrossRef] [PubMed]

Söderlund, M. J.

Tropper, A. C.

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
[CrossRef]

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-13 (1995).
[CrossRef]

Tünnermann, A.

Unger, S.

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, "Efficient Yb laser fibers with low photodarkening by optimization of the core composition," Opt. Express. 16, 15540-15545 (2008).
[CrossRef] [PubMed]

S. Jetschke, S. Unger, U. Röpke, and J. Kirchhof, "Photodarkening in Yb doped fibers: experimental evidence of equilibrium states depending on the pump power," Opt. Express 15, 14838-14843 (2007).
[CrossRef] [PubMed]

Winful, H. G.

L. Dong, T. W. Wu, H. A. McKay, L. B. Fu, J. Li, and H. G. Winful, "All-Glass Large-Core Leakage Channel Fibers," IEEE J. Sel. Top. Quantum Electron. 15, 47-53 (2009).
[CrossRef]

Wisk, P.

Wu, T. W.

L. Dong, T. W. Wu, H. A. McKay, L. B. Fu, J. Li, and H. G. Winful, "All-Glass Large-Core Leakage Channel Fibers," IEEE J. Sel. Top. Quantum Electron. 15, 47-53 (2009).
[CrossRef]

Yan, M. F.

Zellmer, H.

Appl. Phys. Lett. (1)

C. D. Brooks and F. Di Teodoro, "Multi-megawatt peak power, single-transverse-mode operation of a 100μm core diameter, Yb-doped rod-like photonic crystal fiber amplifier," Appl. Phys. Lett. 89, 111119-111121 (2006).
[CrossRef]

Electron. Lett. (1)

Y. W. Lee, S. Sinha, M. J. F. Digonnet, R. L. Byer and S. Jiang, "Measurements of high photodarkening resistance in heavily Yb3+ doped phosphate fibers," Electron. Lett. 44, 14-16 (2008).
[CrossRef]

IEEE J. Quantum. Electron. (1)

R. Paschotta, J. Nilsson, A. C. Tropper, and D. C. Hanna, "Ytterbium-doped fiber amplifiers," IEEE J. Quantum. Electron. 33, 1049-1056 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Dong, T. W. Wu, H. A. McKay, L. B. Fu, J. Li, and H. G. Winful, "All-Glass Large-Core Leakage Channel Fibers," IEEE J. Sel. Top. Quantum Electron. 15, 47-53 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum. Electron. (1)

H. M. Pask, R. J. Carman, D. C. Hanna, A. C. Tropper, C. J. Mackechnie, P. R. Barber, and J. M. Dawes, "Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2µm region," IEEE J. Sel. Top. Quantum. Electron. 1, 2-13 (1995).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (4)

Opt. Express. (1)

S. Jetschke, S. Unger, A. Schwuchow, M. Leich, and J. Kirchhof, "Efficient Yb laser fibers with low photodarkening by optimization of the core composition," Opt. Express. 16, 15540-15545 (2008).
[CrossRef] [PubMed]

Opt. Lett. (4)

Other (4)

R. Sims, V. Sudesh, T. McComb, Y. Chen, M. Bass, M. Richardson, A.G. James, J. Ballato and A.E. Siegman, "Diode-pumped very large core, gain guided, index anti-guided single mode fiber laser," Advanced Solid State Photonics, paper WB3, Denver, February 2009.

A. V. Shubin, M. V. Yashkov, M. A. Melkumov, S. A. Smirnov, I. A. Bufetov, and E. M. Dianov, "Photodarkening of aluminosilicate and phoshosilicate Yb-doped fibers," CLEO Europe, paper CJ5, 2007.

I. Hartl, H. A. McKay, R. Thapa, B. K. Thoimas, A. Ruehl, L. Dong and M. E. Fermann, "Fully stabilized GHz Yb-fiber laser frequency comb," Advanced Solid State Photonics, post-deadline paper MF9, Denver, February 2009.

L. B. Fu, H. A. McKay, S. Suzuki, M. Ohta, and L. Dong, "All-Glass PM Leakage Channel Fibers with up to 80µm Core Diameters for High Gain and High Peak Power Fiber Amplifiers," Advanced Solid State Photonics, post-deadline paper MF3, Denver, February 2009.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a). Normalized absorption and emission cross sections of ytterbium-doped aluminosilicate and ytterbium-doped phosphosilicate fibers. The peaks are at 2.5 pm2 and 1.2pm2 respectively. (b) Lifetime measurement results of the ytterbium-doped fibers

Fig. 2.
Fig. 2.

(a). Energy diagram of Yb3+ ions. Normalized net cross sections of typical (b) ytterbium-doped aluminosilicate and (c) ytterbium-doped phosphosilicate fibers.

Fig. 3.
Fig. 3.

Measured (a) refractive index profiles and (b) absorption spectra of fiber 1 (3200dB/m) and 2 (4700dB/m).

Fig. 4.
Fig. 4.

Measured lifetime with exponential fit. Lifetimes are 1.1ms and 0.75 ms for the two fibers with 3200dB/m and 4700dB/m absorption respectively.

Fig. 5.
Fig. 5.

Setup for photo-darkening measurements.

Fig. 6.
Fig. 6.

Measured (a) photo-darkening losses at 675nm and (b) photo-darkening loss spectra in the phosphosilicate fibers.

Fig. 7.
Fig. 7.

Measured photo-darkening loss dynamics during pump on and off.

Fig. 8.
Fig. 8.

Measured gain in the two fibers.

Fig. 9.
Fig. 9.

Measured amplifier performance. The slope efficiencies are 84% and 66% for the fibers with 3200dB/m and 4700dB/m absorption respectively. Input power is 12mW.

Tables (1)

Tables Icon

Table 1. Energy levels of Yb3+ ions in aluminosilicate and phosphosilicate fibers.

Metrics