Abstract

We experimentally demonstrate a nonlinear fiber-based optical autocorrelation peak discriminator. The approach exploits four-wave mixing in a 37-cm highly-nonlinear bismuth-oxide fiber that provides a passive and compact means for rejecting cross-correlation peaks. The autocorrelation peak discriminator plays an important role in improving the detection of optical CDMA signals. Eye diagrams and bit-error rates are measured at different power ratios. Significant receiver sensitivity improvements are obtained and error-floors are removed. The experimental results show that the autocorrelation peak discriminator works well even when the amplitudes of individual cross-correlation peaks are higher than that of the autocorrelation peak.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Michie, I. Andonovic, R. Atkinson, Y. Deng, J. Szefer, C.-S. Bres, Y. K. Huang, I. Glesk, P. Prucnal, K. Sasaki, and G. Gupta, “Interferometric noise characterization of a 2-D time-spreading wavelength-hopping OCDMA network using FBG encoding and decoding,” J. Opt. Netw. 6(6), 663–676 (2007).
    [CrossRef]
  2. X. Lei, I. Glesk, V. Baby, and P. R. Prucnal, “Multiple access interference (MAI) noise reduction in a 2D optical CDMA system using ultrafast optical thresholding,” Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2, 591- 592 (2004).
  3. K. Kravtsov, P. R. Prucnal, and M. M. Bubnov, “Simple nonlinear interferometer-based all-optical thresholder and its applications for optical CDMA,” Opt. Express 15(20), 13114–13122 (2007).
    [CrossRef] [PubMed]
  4. K.-L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, “Unbalanced TOAD for optical data and clock separation in self-clocked transparent OTDM networks,” IEEE Photon. Technol. Lett. 9(6), 830–832 (1997).
    [CrossRef]
  5. J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, “A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement,” IEEE Photon. Technol. Lett. 14(6), 876–878 (2002).
    [CrossRef]
  6. X. Wang, T. Hamanaka, N. Wada, and K. Kitayama, “Dispersion-flattened-fiber based optical thresholder for multiple-access-interference suppression in OCDMA system,” Opt. Express 13(14), 5499–5505 (2005).
    [CrossRef] [PubMed]
  7. Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, “Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing,” IEEE Photon. Technol. Lett. 16(7), 1778–1780 (2004).
    [CrossRef]
  8. C.-S. Brès, Y.-K. Huang, I. Glesk, and P. R. Prucnal, “Scalable asynchronous incoherent optical CDMA [Invited],” J. Opt. Netw. 6(6), 599–615 (2007).
    [CrossRef]
  9. G.-C. Yang, and W. C. Kwong, “Prime Codes with applications to CDMA Optical and Wireless Networks,” Artech House, Norwood, Massachusetts, (2002)

2007 (3)

2005 (1)

2004 (1)

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, “Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing,” IEEE Photon. Technol. Lett. 16(7), 1778–1780 (2004).
[CrossRef]

2002 (1)

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, “A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement,” IEEE Photon. Technol. Lett. 14(6), 876–878 (2002).
[CrossRef]

1997 (1)

K.-L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, “Unbalanced TOAD for optical data and clock separation in self-clocked transparent OTDM networks,” IEEE Photon. Technol. Lett. 9(6), 830–832 (1997).
[CrossRef]

Andonovic, I.

Atkinson, R.

Belardi, W.

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, “A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement,” IEEE Photon. Technol. Lett. 14(6), 876–878 (2002).
[CrossRef]

Bres, C.-S.

Brès, C.-S.

Bubnov, M. M.

Deng, K.-L.

K.-L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, “Unbalanced TOAD for optical data and clock separation in self-clocked transparent OTDM networks,” IEEE Photon. Technol. Lett. 9(6), 830–832 (1997).
[CrossRef]

Deng, Y.

Fejer, M. M.

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, “Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing,” IEEE Photon. Technol. Lett. 16(7), 1778–1780 (2004).
[CrossRef]

Glesk, I.

Gupta, G.

Hamanaka, T.

Huang, Y. K.

Huang, Y.-K.

Ibsen, M.

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, “A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement,” IEEE Photon. Technol. Lett. 14(6), 876–878 (2002).
[CrossRef]

Jiang, Z.

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, “Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing,” IEEE Photon. Technol. Lett. 16(7), 1778–1780 (2004).
[CrossRef]

Kang, K. I.

K.-L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, “Unbalanced TOAD for optical data and clock separation in self-clocked transparent OTDM networks,” IEEE Photon. Technol. Lett. 9(6), 830–832 (1997).
[CrossRef]

Kitayama, K.

Kravtsov, K.

Langrock, C.

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, “Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing,” IEEE Photon. Technol. Lett. 16(7), 1778–1780 (2004).
[CrossRef]

Leaird, D. E.

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, “Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing,” IEEE Photon. Technol. Lett. 16(7), 1778–1780 (2004).
[CrossRef]

Lee, J. H.

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, “A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement,” IEEE Photon. Technol. Lett. 14(6), 876–878 (2002).
[CrossRef]

Michie, C.

Monro, T. M.

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, “A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement,” IEEE Photon. Technol. Lett. 14(6), 876–878 (2002).
[CrossRef]

Prucnal, P.

Prucnal, P. R.

Richardson, D. J.

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, “A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement,” IEEE Photon. Technol. Lett. 14(6), 876–878 (2002).
[CrossRef]

Roussev, R. V.

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, “Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing,” IEEE Photon. Technol. Lett. 16(7), 1778–1780 (2004).
[CrossRef]

Sasaki, K.

Seo, D. S.

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, “Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing,” IEEE Photon. Technol. Lett. 16(7), 1778–1780 (2004).
[CrossRef]

Szefer, J.

Teh, P. C.

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, “A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement,” IEEE Photon. Technol. Lett. 14(6), 876–878 (2002).
[CrossRef]

Wada, N.

Wang, X.

Weiner, A. M.

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, “Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing,” IEEE Photon. Technol. Lett. 16(7), 1778–1780 (2004).
[CrossRef]

Yang, S.-D.

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, “Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing,” IEEE Photon. Technol. Lett. 16(7), 1778–1780 (2004).
[CrossRef]

Yusoff, Z.

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, “A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement,” IEEE Photon. Technol. Lett. 14(6), 876–878 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

K.-L. Deng, I. Glesk, K. I. Kang, and P. R. Prucnal, “Unbalanced TOAD for optical data and clock separation in self-clocked transparent OTDM networks,” IEEE Photon. Technol. Lett. 9(6), 830–832 (1997).
[CrossRef]

J. H. Lee, P. C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T. M. Monro, and D. J. Richardson, “A holey fiber-based nonlinear thresholding device for optical CDMA receiver performance enhancement,” IEEE Photon. Technol. Lett. 14(6), 876–878 (2002).
[CrossRef]

Z. Jiang, D. S. Seo, S.-D. Yang, D. E. Leaird, R. V. Roussev, C. Langrock, M. M. Fejer, and A. M. Weiner, “Low-power high-contrast coded waveform discrimination at 10 GHz via nonlinear processing,” IEEE Photon. Technol. Lett. 16(7), 1778–1780 (2004).
[CrossRef]

J. Opt. Netw. (2)

Opt. Express (2)

Other (2)

G.-C. Yang, and W. C. Kwong, “Prime Codes with applications to CDMA Optical and Wireless Networks,” Artech House, Norwood, Massachusetts, (2002)

X. Lei, I. Glesk, V. Baby, and P. R. Prucnal, “Multiple access interference (MAI) noise reduction in a 2D optical CDMA system using ultrafast optical thresholding,” Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2, 591- 592 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic illustration. (a) Generation of autocorrelation and cross-correlation peaks during optical CDMA signal decoding. (b) Optical spectrum of the FWM based autocorrelation peak discriminator.

Fig. 2
Fig. 2

Experimental setup of the autocorrelation peak discriminator. MAI: Multi-access interference; Bi-NLF: Highly-nonlinear bismuth oxide fiber; BPF: Optical bandpass filter.

Fig. 3
Fig. 3

Eye diagrams of decoded signal with different user 2 to user 1 power ratios (a) 3 dB (b) 3 dB with autocorrelation peak extraction (c) 0 dB (d) 0 dB with autocorrelation peak extraction (e) −3 dB (f) −3 dB with autocorrelation peak extraction.

Fig. 4
Fig. 4

BER measurement at different user 2 (cross-correlation) to user 1 (autocorrelation) power ratios. Hollow: Before autocorrelation peak extraction. Solid: After autocorrelation peak extraction. For a power ratio of 3 dB, the MAI are too strong and the BER of the decoded signal cannot be measured without the autocorrelation peak discriminator.

Fig. 5
Fig. 5

Eye diagrams of decoded signal (a) some cross-correlation peaks have the same amplitudes as the autocorrelation peaks (b) cross correlation peaks nearly varnish after the discriminator (c) some cross-correlation peaks are of higher amplitudes than the autocorrelation peaks (d) cross correlation peaks nearly vanish after the discriminator.

Metrics