Abstract

A Photonic Crystal (PC) with a surface defect layer (made of dimers) is studied in the microwave regime. The dispersion diagram is obtained with the Plane Wave Expansion Method. The dispersion diagram reveals that the dimer-layer supports a surface mode with negative slope. Two facts are noted: First, a guided (bounded) wave is present, propagating along the surface of the dimer-layer. Second, above the light line, the fast traveling mode couple to the propagating spectra and as a result a directive (narrow beam) radiation with backward characteristics is observed and measured. In this leaky mode regime, symmetrical radiation patterns with respect to the normal to the PC surface are attained. Beam steering is observed and measured in a 70° angular range when frequency ranges in the 11.88–13.69GHz interval. Thus, a PC based surface wave structure that acts as a frequency dependent leaky wave antenna is presented. Angular radiation pattern measurements are in agreement with those obtained via numerical simulations that employ the Finite Difference Time Domain Method (FDTD). Finally, the backward radiation characteristics that in turn suggest the existence of a backward leaky mode in the dimer-layer are experimentally verified using a halved dimer-layer structure.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
    [CrossRef] [PubMed]
  2. S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
    [CrossRef] [PubMed]
  3. E. Ozbay, E. Michel, G. Tuttle, R. Biswas, and K. M. Ho, J. Bostak and D. M. Bloom, "Double-etch geometry for millimeter-wave photonic band-gap crystals," Appl. Phys. Lett. 65, 1617-1619 (1994).
    [CrossRef]
  4. B. Temelkuran and E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, "Resonant cavity enhanced detectors embedded in photonic crystals," Appl. Phys. Lett. 72, 2376-2378 (1998).
    [CrossRef]
  5. R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961-10964 (1991).
    [CrossRef]
  6. P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
    [CrossRef] [PubMed]
  7. S. K. Morrison and Y. S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005).
    [CrossRef]
  8. E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402, R (2004).
    [CrossRef]
  9. Q1. V. D. Kumar and K. Asakawa, "Transmission and directionality control of light emission from a nanoslit in metallic film flanked by periodic gratings," Photon. Nanostruct. Fundam. Appl. 6, 148-153 (2008).
    [CrossRef]
  10. H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
    [CrossRef] [PubMed]
  11. L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
    [CrossRef] [PubMed]
  12. I. Bulu, H. Caglayan, and E. Ozbay, "Beaming of light and enhanced transmission via surface modes of photonic crystals," Opt. Lett. 30, 3078-3080 (2005).
    [CrossRef] [PubMed]
  13. H. Caglayan, I. Bulu, and E. Ozbay, "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
    [CrossRef]
  14. Q2. L. Wu, M. Mazilu, and T. F. Krauss, "Beam Steering in Planar-Photonic Crystals: From Superprism to Supercollimator," IEEE J. Lightwave Technol. 21, 561-566 (2003).
    [CrossRef]
  15. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372 (1999).
    [CrossRef]
  16. T. Baba and M. Nakamura, "Photonic Crystal Light Deflection Devices Using the Superprism Effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
    [CrossRef]
  17. A. Lai, T. Itoh, and C. Caloz, "Composite Right/Left-Handed Transmission Line Metamaterials," IEEE Microwave Mag. 10, 34-50 (2004).
    [CrossRef]
  18. T. Tamir and A. A. Oliner, "Guided Complex Waves, Part I," Proc. Inst. Electr. Eng. 110, 310 (1963).
    [CrossRef]
  19. T. Tamir and A. A. Oliner, "Guided Complex Waves, Part II," Proc. Inst. Electr. Eng. 110, 325 (1963).
    [CrossRef]
  20. A. A. Oliner and D. R. Jackson, "Leaky-Wave Antennas," Antenna Engineering Handbook, J. Volakis, ed., (McGraw Hill, (2007) Ch. 11.
  21. S. Lim, C. Caloz, and T. Itoh, "Metamaterial-Based Electronically Controlled Transmission-Line Structure as a Novel Leaky-Wave Antenna with Tunable Radiation Angle and Beamwidth," IEEE Trans. Microwave Theory Tech. 52, 2678-2689 (2004).
    [CrossRef]
  22. D. F. Sievenpiper, "Forward and Backward Leaky Wave Radiation With Large Effective Aperture From an Electronically Tunable Textured Surface," IEEE Trans. Antennas and Propagat. 53, 236-247 (2005).
    [CrossRef]
  23. D. Sievenpiper, J. Schaffner, J. J. Lee, and S. Livingston, "A Steerable Leaky-Wave Antenna using a Tunable Impedance Ground Plane," IEEE Antennas Wireless Propagat. Lett. 1, 179-182 (2002).
    [CrossRef]
  24. Q3. L. Liu, C. Caloz, and T. ltoh, "Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability," Electron. Lett. 38, 1414-1416 (2002).
    [CrossRef]
  25. T. Ueda, N. Michishita, A. Lai, and T. Itoh, "Leaky Wave Antenna Based on Evanescent-Mode Left-Handed Transmission Lines Composed of a Cut-Off Parallel-Plate Waveguide Loaded with Dielectric Resonators," IEICE Trans. Electron. 90-C, 1770-1775 (2007).
    [CrossRef]
  26. I. J. Bahl and K. C. Gupta, "A Leaky Wave Antenna Using an Artificial Dielectric Medium," IEEE Trans. Antennas and Propag. 22, 119-122 (1974).
    [CrossRef]
  27. D. R. Jackson, J. Chen, R. Qiang, F. Capolino, A. A. Oliner, "The Role of Leaky Plasmon Waves in the Directive Beaming of Light Through a Subwavelength Aperture," Opt. Express 16, 21271-21281 (2008).
    [CrossRef] [PubMed]
  28. I. Bulu, H. Caglayan, and E. Ozbay, "Radiation properties of sources inside photonic crystals," Phys. Rev. B 67, 205103 (2003).
    [CrossRef]
  29. I. Bulu, H. Caglayan, and E. Ozbay, "Highly directive radiation from sources embedded inside photonic crystals," Appl. Phys. Lett. 83, 3263-3265 (2003).
    [CrossRef]
  30. S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Backward surface waves at photonic crystals," Phys. Rev. B 75, 245116, (2007).
    [CrossRef]
  31. S. Foteinopoulou, G. Kenanakis, N. Katsarakis, I. Tsiapa, M. Kafesaki, and E. N. Economou, C. M. Soukoulis, "Experimental verification of backward wave propagation at photonic crystal surfaces," Appl. Phys. Lett. 91, 214102 (2007).
    [CrossRef]
  32. F. Capolino, D. R. Jackson, and D. R. Wilton, "Fundamental Properties of the Field at the Interface Between Air and a Periodic Artificial Material Excited by a Line Source," IEEE Trans. Antennas Propagat. 53, 91-99 (2005).
    [CrossRef]
  33. Q4. F. Capolino, D. R. Jackson, D. R. Wilton, "Mode Excitation From Sources in Two-Dimensional EBG Waveguides Using the Array Scanning Method," IEEE Microwaves and Wireless Comp. Lett. 15, 49-51, (2005).
    [CrossRef]
  34. IEEE Stand. Def. Terms Antennas, IEEE Std. 145-1993, (1993).
  35. C. A. Balanis, Antenna Theory, (John Wiley & Sons, 3rd Edition, 2005) Ch. 2 and 3.

2008 (3)

Q1. V. D. Kumar and K. Asakawa, "Transmission and directionality control of light emission from a nanoslit in metallic film flanked by periodic gratings," Photon. Nanostruct. Fundam. Appl. 6, 148-153 (2008).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

D. R. Jackson, J. Chen, R. Qiang, F. Capolino, A. A. Oliner, "The Role of Leaky Plasmon Waves in the Directive Beaming of Light Through a Subwavelength Aperture," Opt. Express 16, 21271-21281 (2008).
[CrossRef] [PubMed]

2007 (3)

T. Ueda, N. Michishita, A. Lai, and T. Itoh, "Leaky Wave Antenna Based on Evanescent-Mode Left-Handed Transmission Lines Composed of a Cut-Off Parallel-Plate Waveguide Loaded with Dielectric Resonators," IEICE Trans. Electron. 90-C, 1770-1775 (2007).
[CrossRef]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Backward surface waves at photonic crystals," Phys. Rev. B 75, 245116, (2007).
[CrossRef]

S. Foteinopoulou, G. Kenanakis, N. Katsarakis, I. Tsiapa, M. Kafesaki, and E. N. Economou, C. M. Soukoulis, "Experimental verification of backward wave propagation at photonic crystal surfaces," Appl. Phys. Lett. 91, 214102 (2007).
[CrossRef]

2005 (5)

F. Capolino, D. R. Jackson, and D. R. Wilton, "Fundamental Properties of the Field at the Interface Between Air and a Periodic Artificial Material Excited by a Line Source," IEEE Trans. Antennas Propagat. 53, 91-99 (2005).
[CrossRef]

Q4. F. Capolino, D. R. Jackson, D. R. Wilton, "Mode Excitation From Sources in Two-Dimensional EBG Waveguides Using the Array Scanning Method," IEEE Microwaves and Wireless Comp. Lett. 15, 49-51, (2005).
[CrossRef]

D. F. Sievenpiper, "Forward and Backward Leaky Wave Radiation With Large Effective Aperture From an Electronically Tunable Textured Surface," IEEE Trans. Antennas and Propagat. 53, 236-247 (2005).
[CrossRef]

S. K. Morrison and Y. S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, "Beaming of light and enhanced transmission via surface modes of photonic crystals," Opt. Lett. 30, 3078-3080 (2005).
[CrossRef] [PubMed]

2004 (3)

A. Lai, T. Itoh, and C. Caloz, "Composite Right/Left-Handed Transmission Line Metamaterials," IEEE Microwave Mag. 10, 34-50 (2004).
[CrossRef]

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

S. Lim, C. Caloz, and T. Itoh, "Metamaterial-Based Electronically Controlled Transmission-Line Structure as a Novel Leaky-Wave Antenna with Tunable Radiation Angle and Beamwidth," IEEE Trans. Microwave Theory Tech. 52, 2678-2689 (2004).
[CrossRef]

2003 (4)

I. Bulu, H. Caglayan, and E. Ozbay, "Radiation properties of sources inside photonic crystals," Phys. Rev. B 67, 205103 (2003).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, "Highly directive radiation from sources embedded inside photonic crystals," Appl. Phys. Lett. 83, 3263-3265 (2003).
[CrossRef]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Q2. L. Wu, M. Mazilu, and T. F. Krauss, "Beam Steering in Planar-Photonic Crystals: From Superprism to Supercollimator," IEEE J. Lightwave Technol. 21, 561-566 (2003).
[CrossRef]

2002 (4)

T. Baba and M. Nakamura, "Photonic Crystal Light Deflection Devices Using the Superprism Effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

D. Sievenpiper, J. Schaffner, J. J. Lee, and S. Livingston, "A Steerable Leaky-Wave Antenna using a Tunable Impedance Ground Plane," IEEE Antennas Wireless Propagat. Lett. 1, 179-182 (2002).
[CrossRef]

Q3. L. Liu, C. Caloz, and T. ltoh, "Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability," Electron. Lett. 38, 1414-1416 (2002).
[CrossRef]

1999 (1)

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372 (1999).
[CrossRef]

1998 (1)

B. Temelkuran and E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, "Resonant cavity enhanced detectors embedded in photonic crystals," Appl. Phys. Lett. 72, 2376-2378 (1998).
[CrossRef]

1994 (1)

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, and K. M. Ho, J. Bostak and D. M. Bloom, "Double-etch geometry for millimeter-wave photonic band-gap crystals," Appl. Phys. Lett. 65, 1617-1619 (1994).
[CrossRef]

1991 (2)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961-10964 (1991).
[CrossRef]

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

1987 (1)

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

1974 (1)

I. J. Bahl and K. C. Gupta, "A Leaky Wave Antenna Using an Artificial Dielectric Medium," IEEE Trans. Antennas and Propag. 22, 119-122 (1974).
[CrossRef]

1963 (2)

T. Tamir and A. A. Oliner, "Guided Complex Waves, Part I," Proc. Inst. Electr. Eng. 110, 310 (1963).
[CrossRef]

T. Tamir and A. A. Oliner, "Guided Complex Waves, Part II," Proc. Inst. Electr. Eng. 110, 325 (1963).
[CrossRef]

Agio, M.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Asakawa, K.

Q1. V. D. Kumar and K. Asakawa, "Transmission and directionality control of light emission from a nanoslit in metallic film flanked by periodic gratings," Photon. Nanostruct. Fundam. Appl. 6, 148-153 (2008).
[CrossRef]

Baba, T.

T. Baba and M. Nakamura, "Photonic Crystal Light Deflection Devices Using the Superprism Effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

Bahl, I. J.

I. J. Bahl and K. C. Gupta, "A Leaky Wave Antenna Using an Artificial Dielectric Medium," IEEE Trans. Antennas and Propag. 22, 119-122 (1974).
[CrossRef]

Birner, A.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Biswas, R.

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, and K. M. Ho, J. Bostak and D. M. Bloom, "Double-etch geometry for millimeter-wave photonic band-gap crystals," Appl. Phys. Lett. 65, 1617-1619 (1994).
[CrossRef]

Bloom, D. M.

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, and K. M. Ho, J. Bostak and D. M. Bloom, "Double-etch geometry for millimeter-wave photonic band-gap crystals," Appl. Phys. Lett. 65, 1617-1619 (1994).
[CrossRef]

Bostak, J.

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, and K. M. Ho, J. Bostak and D. M. Bloom, "Double-etch geometry for millimeter-wave photonic band-gap crystals," Appl. Phys. Lett. 65, 1617-1619 (1994).
[CrossRef]

Brommer, K. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961-10964 (1991).
[CrossRef]

Bulu, I.

H. Caglayan, I. Bulu, and E. Ozbay, "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, "Beaming of light and enhanced transmission via surface modes of photonic crystals," Opt. Lett. 30, 3078-3080 (2005).
[CrossRef] [PubMed]

I. Bulu, H. Caglayan, and E. Ozbay, "Radiation properties of sources inside photonic crystals," Phys. Rev. B 67, 205103 (2003).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, "Highly directive radiation from sources embedded inside photonic crystals," Appl. Phys. Lett. 83, 3263-3265 (2003).
[CrossRef]

Caglayan, H.

H. Caglayan, I. Bulu, and E. Ozbay, "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, "Beaming of light and enhanced transmission via surface modes of photonic crystals," Opt. Lett. 30, 3078-3080 (2005).
[CrossRef] [PubMed]

I. Bulu, H. Caglayan, and E. Ozbay, "Highly directive radiation from sources embedded inside photonic crystals," Appl. Phys. Lett. 83, 3263-3265 (2003).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, "Radiation properties of sources inside photonic crystals," Phys. Rev. B 67, 205103 (2003).
[CrossRef]

Caloz, C.

S. Lim, C. Caloz, and T. Itoh, "Metamaterial-Based Electronically Controlled Transmission-Line Structure as a Novel Leaky-Wave Antenna with Tunable Radiation Angle and Beamwidth," IEEE Trans. Microwave Theory Tech. 52, 2678-2689 (2004).
[CrossRef]

A. Lai, T. Itoh, and C. Caloz, "Composite Right/Left-Handed Transmission Line Metamaterials," IEEE Microwave Mag. 10, 34-50 (2004).
[CrossRef]

Q3. L. Liu, C. Caloz, and T. ltoh, "Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability," Electron. Lett. 38, 1414-1416 (2002).
[CrossRef]

Capolino, F.

D. R. Jackson, J. Chen, R. Qiang, F. Capolino, A. A. Oliner, "The Role of Leaky Plasmon Waves in the Directive Beaming of Light Through a Subwavelength Aperture," Opt. Express 16, 21271-21281 (2008).
[CrossRef] [PubMed]

Q4. F. Capolino, D. R. Jackson, D. R. Wilton, "Mode Excitation From Sources in Two-Dimensional EBG Waveguides Using the Array Scanning Method," IEEE Microwaves and Wireless Comp. Lett. 15, 49-51, (2005).
[CrossRef]

F. Capolino, D. R. Jackson, and D. R. Wilton, "Fundamental Properties of the Field at the Interface Between Air and a Periodic Artificial Material Excited by a Line Source," IEEE Trans. Antennas Propagat. 53, 91-99 (2005).
[CrossRef]

Chen, J.

Degiron, A.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Ebbesen, T. W.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Economou, E. N.

S. Foteinopoulou, G. Kenanakis, N. Katsarakis, I. Tsiapa, M. Kafesaki, and E. N. Economou, C. M. Soukoulis, "Experimental verification of backward wave propagation at photonic crystal surfaces," Appl. Phys. Lett. 91, 214102 (2007).
[CrossRef]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Backward surface waves at photonic crystals," Phys. Rev. B 75, 245116, (2007).
[CrossRef]

Foteinopoulou, S.

S. Foteinopoulou, G. Kenanakis, N. Katsarakis, I. Tsiapa, M. Kafesaki, and E. N. Economou, C. M. Soukoulis, "Experimental verification of backward wave propagation at photonic crystal surfaces," Appl. Phys. Lett. 91, 214102 (2007).
[CrossRef]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Backward surface waves at photonic crystals," Phys. Rev. B 75, 245116, (2007).
[CrossRef]

Garcia-Vidal, F. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Gmitter, T. J.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

Gosele, U.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Gupta, K. C.

I. J. Bahl and K. C. Gupta, "A Leaky Wave Antenna Using an Artificial Dielectric Medium," IEEE Trans. Antennas and Propag. 22, 119-122 (1974).
[CrossRef]

Ho, K. M.

B. Temelkuran and E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, "Resonant cavity enhanced detectors embedded in photonic crystals," Appl. Phys. Lett. 72, 2376-2378 (1998).
[CrossRef]

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, and K. M. Ho, J. Bostak and D. M. Bloom, "Double-etch geometry for millimeter-wave photonic band-gap crystals," Appl. Phys. Lett. 65, 1617-1619 (1994).
[CrossRef]

Itoh, T.

T. Ueda, N. Michishita, A. Lai, and T. Itoh, "Leaky Wave Antenna Based on Evanescent-Mode Left-Handed Transmission Lines Composed of a Cut-Off Parallel-Plate Waveguide Loaded with Dielectric Resonators," IEICE Trans. Electron. 90-C, 1770-1775 (2007).
[CrossRef]

S. Lim, C. Caloz, and T. Itoh, "Metamaterial-Based Electronically Controlled Transmission-Line Structure as a Novel Leaky-Wave Antenna with Tunable Radiation Angle and Beamwidth," IEEE Trans. Microwave Theory Tech. 52, 2678-2689 (2004).
[CrossRef]

A. Lai, T. Itoh, and C. Caloz, "Composite Right/Left-Handed Transmission Line Metamaterials," IEEE Microwave Mag. 10, 34-50 (2004).
[CrossRef]

Jackson, D. R.

D. R. Jackson, J. Chen, R. Qiang, F. Capolino, A. A. Oliner, "The Role of Leaky Plasmon Waves in the Directive Beaming of Light Through a Subwavelength Aperture," Opt. Express 16, 21271-21281 (2008).
[CrossRef] [PubMed]

Q4. F. Capolino, D. R. Jackson, D. R. Wilton, "Mode Excitation From Sources in Two-Dimensional EBG Waveguides Using the Array Scanning Method," IEEE Microwaves and Wireless Comp. Lett. 15, 49-51, (2005).
[CrossRef]

F. Capolino, D. R. Jackson, and D. R. Wilton, "Fundamental Properties of the Field at the Interface Between Air and a Periodic Artificial Material Excited by a Line Source," IEEE Trans. Antennas Propagat. 53, 91-99 (2005).
[CrossRef]

Joannopoulos, J. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961-10964 (1991).
[CrossRef]

John, S.

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

Kafesaki, M.

S. Foteinopoulou, G. Kenanakis, N. Katsarakis, I. Tsiapa, M. Kafesaki, and E. N. Economou, C. M. Soukoulis, "Experimental verification of backward wave propagation at photonic crystal surfaces," Appl. Phys. Lett. 91, 214102 (2007).
[CrossRef]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Backward surface waves at photonic crystals," Phys. Rev. B 75, 245116, (2007).
[CrossRef]

Katsarakis, N.

S. Foteinopoulou, G. Kenanakis, N. Katsarakis, I. Tsiapa, M. Kafesaki, and E. N. Economou, C. M. Soukoulis, "Experimental verification of backward wave propagation at photonic crystal surfaces," Appl. Phys. Lett. 91, 214102 (2007).
[CrossRef]

Kavanaugh, J. P.

B. Temelkuran and E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, "Resonant cavity enhanced detectors embedded in photonic crystals," Appl. Phys. Lett. 72, 2376-2378 (1998).
[CrossRef]

Kawakami, S.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372 (1999).
[CrossRef]

Kawashima, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372 (1999).
[CrossRef]

Kenanakis, G.

S. Foteinopoulou, G. Kenanakis, N. Katsarakis, I. Tsiapa, M. Kafesaki, and E. N. Economou, C. M. Soukoulis, "Experimental verification of backward wave propagation at photonic crystal surfaces," Appl. Phys. Lett. 91, 214102 (2007).
[CrossRef]

Kivshar, Y. S.

S. K. Morrison and Y. S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

Kosaka, H.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372 (1999).
[CrossRef]

Kramper, P.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Krauss, T. F.

Q2. L. Wu, M. Mazilu, and T. F. Krauss, "Beam Steering in Planar-Photonic Crystals: From Superprism to Supercollimator," IEEE J. Lightwave Technol. 21, 561-566 (2003).
[CrossRef]

Kumar, V. D.

Q1. V. D. Kumar and K. Asakawa, "Transmission and directionality control of light emission from a nanoslit in metallic film flanked by periodic gratings," Photon. Nanostruct. Fundam. Appl. 6, 148-153 (2008).
[CrossRef]

Lai, A.

T. Ueda, N. Michishita, A. Lai, and T. Itoh, "Leaky Wave Antenna Based on Evanescent-Mode Left-Handed Transmission Lines Composed of a Cut-Off Parallel-Plate Waveguide Loaded with Dielectric Resonators," IEICE Trans. Electron. 90-C, 1770-1775 (2007).
[CrossRef]

A. Lai, T. Itoh, and C. Caloz, "Composite Right/Left-Handed Transmission Line Metamaterials," IEEE Microwave Mag. 10, 34-50 (2004).
[CrossRef]

Lee, J. J.

D. Sievenpiper, J. Schaffner, J. J. Lee, and S. Livingston, "A Steerable Leaky-Wave Antenna using a Tunable Impedance Ground Plane," IEEE Antennas Wireless Propagat. Lett. 1, 179-182 (2002).
[CrossRef]

Leung, K. M.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

Lezec, H. J.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Lim, S.

S. Lim, C. Caloz, and T. Itoh, "Metamaterial-Based Electronically Controlled Transmission-Line Structure as a Novel Leaky-Wave Antenna with Tunable Radiation Angle and Beamwidth," IEEE Trans. Microwave Theory Tech. 52, 2678-2689 (2004).
[CrossRef]

Linke, R. A.

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Liu, L.

Q3. L. Liu, C. Caloz, and T. ltoh, "Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability," Electron. Lett. 38, 1414-1416 (2002).
[CrossRef]

Livingston, S.

D. Sievenpiper, J. Schaffner, J. J. Lee, and S. Livingston, "A Steerable Leaky-Wave Antenna using a Tunable Impedance Ground Plane," IEEE Antennas Wireless Propagat. Lett. 1, 179-182 (2002).
[CrossRef]

Martin-Moreno, L.

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Mazilu, M.

Q2. L. Wu, M. Mazilu, and T. F. Krauss, "Beam Steering in Planar-Photonic Crystals: From Superprism to Supercollimator," IEEE J. Lightwave Technol. 21, 561-566 (2003).
[CrossRef]

Meade, R. D.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961-10964 (1991).
[CrossRef]

Michel, E.

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, and K. M. Ho, J. Bostak and D. M. Bloom, "Double-etch geometry for millimeter-wave photonic band-gap crystals," Appl. Phys. Lett. 65, 1617-1619 (1994).
[CrossRef]

Michishita, N.

T. Ueda, N. Michishita, A. Lai, and T. Itoh, "Leaky Wave Antenna Based on Evanescent-Mode Left-Handed Transmission Lines Composed of a Cut-Off Parallel-Plate Waveguide Loaded with Dielectric Resonators," IEICE Trans. Electron. 90-C, 1770-1775 (2007).
[CrossRef]

Morrison, S. K.

S. K. Morrison and Y. S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

Muller, F.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Nakamura, M.

T. Baba and M. Nakamura, "Photonic Crystal Light Deflection Devices Using the Superprism Effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

Notomi, M.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372 (1999).
[CrossRef]

Oliner, A. A.

D. R. Jackson, J. Chen, R. Qiang, F. Capolino, A. A. Oliner, "The Role of Leaky Plasmon Waves in the Directive Beaming of Light Through a Subwavelength Aperture," Opt. Express 16, 21271-21281 (2008).
[CrossRef] [PubMed]

T. Tamir and A. A. Oliner, "Guided Complex Waves, Part II," Proc. Inst. Electr. Eng. 110, 325 (1963).
[CrossRef]

T. Tamir and A. A. Oliner, "Guided Complex Waves, Part I," Proc. Inst. Electr. Eng. 110, 310 (1963).
[CrossRef]

Ozbay, E.

H. Caglayan, I. Bulu, and E. Ozbay, "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, "Beaming of light and enhanced transmission via surface modes of photonic crystals," Opt. Lett. 30, 3078-3080 (2005).
[CrossRef] [PubMed]

I. Bulu, H. Caglayan, and E. Ozbay, "Radiation properties of sources inside photonic crystals," Phys. Rev. B 67, 205103 (2003).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, "Highly directive radiation from sources embedded inside photonic crystals," Appl. Phys. Lett. 83, 3263-3265 (2003).
[CrossRef]

B. Temelkuran and E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, "Resonant cavity enhanced detectors embedded in photonic crystals," Appl. Phys. Lett. 72, 2376-2378 (1998).
[CrossRef]

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, and K. M. Ho, J. Bostak and D. M. Bloom, "Double-etch geometry for millimeter-wave photonic band-gap crystals," Appl. Phys. Lett. 65, 1617-1619 (1994).
[CrossRef]

Qiang, R.

Rappe, A. M.

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961-10964 (1991).
[CrossRef]

Sandoghdar, V.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Sato, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372 (1999).
[CrossRef]

Schaffner, J.

D. Sievenpiper, J. Schaffner, J. J. Lee, and S. Livingston, "A Steerable Leaky-Wave Antenna using a Tunable Impedance Ground Plane," IEEE Antennas Wireless Propagat. Lett. 1, 179-182 (2002).
[CrossRef]

Sievenpiper, D.

D. Sievenpiper, J. Schaffner, J. J. Lee, and S. Livingston, "A Steerable Leaky-Wave Antenna using a Tunable Impedance Ground Plane," IEEE Antennas Wireless Propagat. Lett. 1, 179-182 (2002).
[CrossRef]

Sievenpiper, D. F.

D. F. Sievenpiper, "Forward and Backward Leaky Wave Radiation With Large Effective Aperture From an Electronically Tunable Textured Surface," IEEE Trans. Antennas and Propagat. 53, 236-247 (2005).
[CrossRef]

Soukoulis, C. M.

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Backward surface waves at photonic crystals," Phys. Rev. B 75, 245116, (2007).
[CrossRef]

S. Foteinopoulou, G. Kenanakis, N. Katsarakis, I. Tsiapa, M. Kafesaki, and E. N. Economou, C. M. Soukoulis, "Experimental verification of backward wave propagation at photonic crystal surfaces," Appl. Phys. Lett. 91, 214102 (2007).
[CrossRef]

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Tamamura, T.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372 (1999).
[CrossRef]

Tamir, T.

T. Tamir and A. A. Oliner, "Guided Complex Waves, Part II," Proc. Inst. Electr. Eng. 110, 325 (1963).
[CrossRef]

T. Tamir and A. A. Oliner, "Guided Complex Waves, Part I," Proc. Inst. Electr. Eng. 110, 310 (1963).
[CrossRef]

Temelkuran, B.

B. Temelkuran and E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, "Resonant cavity enhanced detectors embedded in photonic crystals," Appl. Phys. Lett. 72, 2376-2378 (1998).
[CrossRef]

Tomita, A.

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372 (1999).
[CrossRef]

Tsiapa, I.

S. Foteinopoulou, G. Kenanakis, N. Katsarakis, I. Tsiapa, M. Kafesaki, and E. N. Economou, C. M. Soukoulis, "Experimental verification of backward wave propagation at photonic crystal surfaces," Appl. Phys. Lett. 91, 214102 (2007).
[CrossRef]

Tuttle, G.

B. Temelkuran and E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, "Resonant cavity enhanced detectors embedded in photonic crystals," Appl. Phys. Lett. 72, 2376-2378 (1998).
[CrossRef]

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, and K. M. Ho, J. Bostak and D. M. Bloom, "Double-etch geometry for millimeter-wave photonic band-gap crystals," Appl. Phys. Lett. 65, 1617-1619 (1994).
[CrossRef]

Ueda, T.

T. Ueda, N. Michishita, A. Lai, and T. Itoh, "Leaky Wave Antenna Based on Evanescent-Mode Left-Handed Transmission Lines Composed of a Cut-Off Parallel-Plate Waveguide Loaded with Dielectric Resonators," IEICE Trans. Electron. 90-C, 1770-1775 (2007).
[CrossRef]

Wehrspohn, R. B.

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

Wilton, D. R.

F. Capolino, D. R. Jackson, and D. R. Wilton, "Fundamental Properties of the Field at the Interface Between Air and a Periodic Artificial Material Excited by a Line Source," IEEE Trans. Antennas Propagat. 53, 91-99 (2005).
[CrossRef]

Q4. F. Capolino, D. R. Jackson, D. R. Wilton, "Mode Excitation From Sources in Two-Dimensional EBG Waveguides Using the Array Scanning Method," IEEE Microwaves and Wireless Comp. Lett. 15, 49-51, (2005).
[CrossRef]

Wu, L.

Q2. L. Wu, M. Mazilu, and T. F. Krauss, "Beam Steering in Planar-Photonic Crystals: From Superprism to Supercollimator," IEEE J. Lightwave Technol. 21, 561-566 (2003).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

Appl. Phys. Lett. (7)

E. Ozbay, E. Michel, G. Tuttle, R. Biswas, and K. M. Ho, J. Bostak and D. M. Bloom, "Double-etch geometry for millimeter-wave photonic band-gap crystals," Appl. Phys. Lett. 65, 1617-1619 (1994).
[CrossRef]

B. Temelkuran and E. Ozbay, J. P. Kavanaugh, G. Tuttle, and K. M. Ho, "Resonant cavity enhanced detectors embedded in photonic crystals," Appl. Phys. Lett. 72, 2376-2378 (1998).
[CrossRef]

S. K. Morrison and Y. S. Kivshar, "Engineering of directional emission from photonic-crystal waveguides," Appl. Phys. Lett. 86, 081110 (2005).
[CrossRef]

H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Photonic crystals for micro lightwave circuits using wavelength-dependent angular beam steering," Appl. Phys. Lett. 74, 1370-1372 (1999).
[CrossRef]

H. Caglayan, I. Bulu, and E. Ozbay, "Off-axis directional beaming via photonic crystal surface modes," Appl. Phys. Lett. 92, 092114 (2008).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, "Highly directive radiation from sources embedded inside photonic crystals," Appl. Phys. Lett. 83, 3263-3265 (2003).
[CrossRef]

S. Foteinopoulou, G. Kenanakis, N. Katsarakis, I. Tsiapa, M. Kafesaki, and E. N. Economou, C. M. Soukoulis, "Experimental verification of backward wave propagation at photonic crystal surfaces," Appl. Phys. Lett. 91, 214102 (2007).
[CrossRef]

Electron. Lett. (1)

Q3. L. Liu, C. Caloz, and T. ltoh, "Dominant mode leaky-wave antenna with backfire-to-endfire scanning capability," Electron. Lett. 38, 1414-1416 (2002).
[CrossRef]

IEEE Antennas Wireless Propagat. Lett. (1)

D. Sievenpiper, J. Schaffner, J. J. Lee, and S. Livingston, "A Steerable Leaky-Wave Antenna using a Tunable Impedance Ground Plane," IEEE Antennas Wireless Propagat. Lett. 1, 179-182 (2002).
[CrossRef]

IEEE J. Lightwave Technol. (1)

Q2. L. Wu, M. Mazilu, and T. F. Krauss, "Beam Steering in Planar-Photonic Crystals: From Superprism to Supercollimator," IEEE J. Lightwave Technol. 21, 561-566 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Baba and M. Nakamura, "Photonic Crystal Light Deflection Devices Using the Superprism Effect," IEEE J. Quantum Electron. 38, 909-914 (2002).
[CrossRef]

IEEE Microwave Mag. (1)

A. Lai, T. Itoh, and C. Caloz, "Composite Right/Left-Handed Transmission Line Metamaterials," IEEE Microwave Mag. 10, 34-50 (2004).
[CrossRef]

IEEE Microwaves and Wireless Comp. Lett. (1)

Q4. F. Capolino, D. R. Jackson, D. R. Wilton, "Mode Excitation From Sources in Two-Dimensional EBG Waveguides Using the Array Scanning Method," IEEE Microwaves and Wireless Comp. Lett. 15, 49-51, (2005).
[CrossRef]

IEEE Trans. Antennas and Propag. (1)

I. J. Bahl and K. C. Gupta, "A Leaky Wave Antenna Using an Artificial Dielectric Medium," IEEE Trans. Antennas and Propag. 22, 119-122 (1974).
[CrossRef]

IEEE Trans. Antennas and Propagat. (1)

D. F. Sievenpiper, "Forward and Backward Leaky Wave Radiation With Large Effective Aperture From an Electronically Tunable Textured Surface," IEEE Trans. Antennas and Propagat. 53, 236-247 (2005).
[CrossRef]

IEEE Trans. Antennas Propagat. (1)

F. Capolino, D. R. Jackson, and D. R. Wilton, "Fundamental Properties of the Field at the Interface Between Air and a Periodic Artificial Material Excited by a Line Source," IEEE Trans. Antennas Propagat. 53, 91-99 (2005).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

S. Lim, C. Caloz, and T. Itoh, "Metamaterial-Based Electronically Controlled Transmission-Line Structure as a Novel Leaky-Wave Antenna with Tunable Radiation Angle and Beamwidth," IEEE Trans. Microwave Theory Tech. 52, 2678-2689 (2004).
[CrossRef]

IEICE Trans. Electron. (1)

T. Ueda, N. Michishita, A. Lai, and T. Itoh, "Leaky Wave Antenna Based on Evanescent-Mode Left-Handed Transmission Lines Composed of a Cut-Off Parallel-Plate Waveguide Loaded with Dielectric Resonators," IEICE Trans. Electron. 90-C, 1770-1775 (2007).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Photon. Nanostruct. Fundam. Appl. (1)

Q1. V. D. Kumar and K. Asakawa, "Transmission and directionality control of light emission from a nanoslit in metallic film flanked by periodic gratings," Photon. Nanostruct. Fundam. Appl. 6, 148-153 (2008).
[CrossRef]

Phys. Rev. B (3)

R. D. Meade, K. D. Brommer, A. M. Rappe, and J. D. Joannopoulos, "Electromagnetic Bloch waves at the surface of a photonic crystal," Phys. Rev. B 44, 10961-10964 (1991).
[CrossRef]

I. Bulu, H. Caglayan, and E. Ozbay, "Radiation properties of sources inside photonic crystals," Phys. Rev. B 67, 205103 (2003).
[CrossRef]

S. Foteinopoulou, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Backward surface waves at photonic crystals," Phys. Rev. B 75, 245116, (2007).
[CrossRef]

Phys. Rev. Lett. (4)

P. Kramper, M. Agio, C. M. Soukoulis, A. Birner, F. Muller, R. B. Wehrspohn, U. Gosele, and V. Sandoghdar, "Highly Directional Emission from Photonic Crystal Waveguides of Subwavelength Width," Phys. Rev. Lett. 92, 113903 (2004).
[CrossRef] [PubMed]

E. Yablonovitch, T. J. Gmitter, and K. M. Leung, "Photonic band structure: The face-centered-cubic case employing nonspherical atoms," Phys. Rev. Lett. 67, 2295-2298 (1991).
[CrossRef] [PubMed]

S. John, "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett. 58, 2486-2489 (1987).
[CrossRef] [PubMed]

L. Martin-Moreno, F. J. Garcia-Vidal, H. J. Lezec, A. Degiron, and T. W. Ebbesen, "Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations," Phys. Rev. Lett. 90, 167401 (2003).
[CrossRef] [PubMed]

Proc. Inst. Electr. Eng. (2)

T. Tamir and A. A. Oliner, "Guided Complex Waves, Part I," Proc. Inst. Electr. Eng. 110, 310 (1963).
[CrossRef]

T. Tamir and A. A. Oliner, "Guided Complex Waves, Part II," Proc. Inst. Electr. Eng. 110, 325 (1963).
[CrossRef]

Science (1)

H. J. Lezec, A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science 297, 820-822 (2002).
[CrossRef] [PubMed]

Other (4)

A. A. Oliner and D. R. Jackson, "Leaky-Wave Antennas," Antenna Engineering Handbook, J. Volakis, ed., (McGraw Hill, (2007) Ch. 11.

E. Moreno, F. J. Garcia-Vidal, and L. Martin-Moreno, "Enhanced transmission and beaming of light via photonic crystal surface modes," Phys. Rev. B 69, 121402, R (2004).
[CrossRef]

IEEE Stand. Def. Terms Antennas, IEEE Std. 145-1993, (1993).

C. A. Balanis, Antenna Theory, (John Wiley & Sons, 3rd Edition, 2005) Ch. 2 and 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

(a). PC2 structure, (b) PC3 structure, (c) PCD structure, (d) Experimental setup with the PCD, (e) side view of the monopole with the rods, (f) Single periodicity-cell of PC made of 5 layers (PC5), periodic along the x-direction (to be used in the simulations), (g) Single periodicity-cell consisting of the PC5 with a dimer on top, periodic along the x-direction, which is also used in the simulations, (h,i) images of the PCD that is constructed.

Fig. 2.
Fig. 2.

Dispersion diagram describing propagation along the x-direction. The surface mode in the dimer-layer (blue dot) resides inside the bandgap bounded by the air band (dash-dot) and the dielectric band (dashed with two dots) of the PC5 structure without dimer-layer.

Fig. 3.
Fig. 3.

RG for the PCD obtained by FDTD simulation of the field strength (a), and by measurement of the transmission coefficient (b). Dashed lines represent the sample frequencies further investigated (magenta for Case 1, yellow for Case 2, black, green, and red for Cases3a,b,c, respectively). For each case, a polar plot of the radiation pattern is provided. Comparing Fig. 3(a) to Fig 3(b), the discrepancies (i.e., non-symmetric appearance especially at high frequencies) in the measurement RG are attributed to the artifacts of the manufactured PCD and to the non ideal amplitude and frequency (i.e., non-uniform AD) characteristics of the monopole source.

Fig. 4.
Fig. 4.

Normalized angular field distribution for Case 1 at a/λ=0.353. (a) Simulation results obtained from the RG in Fig. 3(a) (b) Measurement results obtained from the RG in Fig. 3(b).

Fig. 5.
Fig. 5.

Normalized angular field distribution for Case 2 at a/λ=0.373. (a). Simulation results obtained from the RG in Fig. 3(a). (b) Measurement results obtained from the RG in Fig. 3(b).

Fig. 6.
Fig. 6.

Angular field distribution for Case 3abc (shown in Fig. 3) at frequencies a/λ=0.385 (black dotted line for Case 3a), a/λ=0.410 (green dashed line for Case 3b), and a/λ=0.438 (red solid line for Case 3). (a) Simulation results for the “far field” radiation pattern which are performed by Rsoft Fullwave software (previously, the simulation RG evaluated at 1m from the center was given in Fig. 3(a)). (b) Measurement results from the RG in Fig. 3(b). This shows that measurements performed at 1m provide an estimate of the far field radiation pattern.

Fig. 7.
Fig. 7.

Calculated mode field profile for Case 2 and Case 3. (a) Case 2: the surface wave (guided) frequency is a/λ=0.373, (b) Case 3: the radiative (leaky wave) frequency is a/λ=0.41. (c) Cross sections of the mode profiles of Figs. 7(a) and 7(b), taken along x-direction passing through the center of the dimers are plotted in the same arbitrary units which is used in Fig. 3(a), Fig. 4(a) and Fig 5(a).

Fig. 8.
Fig. 8.

The experimental setup for PCHD and the normalized AD measurement. The angular field distribution is measured at a distance of 1m at frequencies of a/λ=0.373 (yellow dash-dotted line) which is the guiding frequency, and at the beaming frequencies which are a/λ=0.385 (black dotted line), a/λ=0.410 (green dashed line), a/λ=0.438 (red solid line).

Fig. 9.
Fig. 9.

Radiation Graph for the Photonic Crystal with a halved dimer-layer. (a) Simulation of the field strength, (b) Experimental result for the transmission coefficient (yellow for Case 2, black, green, and red for Case 3a,b,c). The cross sections that are indicated by black, green, and red and yellow dashed lines are plotted in Fig. 8.

Metrics