Abstract

Infrared free-electron lasers ablate tissue with high efficiency and low collateral damage when tuned to the 6-µm range. This wavelength-dependence has been hypothesized to arise from a multi-step process following differential absorption by tissue water and proteins. Here, we test this hypothesis at wavelengths for which cornea has matching overall absorption, but drastically different differential absorption. We measure etch depth, collateral damage and plume images and find that the hypothesis is not confirmed. We do find larger etch depths for larger spot sizes – an effect that can lead to an apparent wavelength dependence. Plume imaging at several wavelengths and spot sizes suggests that this effect is due to increased post-pulse ablation at larger spots.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O'Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
    [CrossRef] [PubMed]
  2. J. I. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependence study of thermal injury and crater morphology,” Lasers Surg. Med. 38(3), 218–228 (2006).
    [CrossRef] [PubMed]
  3. K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. 27(3), 191–205 (2000).
    [CrossRef] [PubMed]
  4. R. A. Hill, Q. Ren, D. C. Nguyen, L. H. Liaw, and M. W. Berns, “Free-electron laser (FEL) ablation of ocular tissues,” Lasers Med. Sci. 13(3), 219–226 (1998).
    [CrossRef]
  5. R. Kaufmann and R. Hibst, “Pulsed erbium:YAG laser ablation in cutaneous surgery,” Lasers Surg. Med. 19(3), 324–330 (1996).
    [CrossRef] [PubMed]
  6. R. Cubeddu, C. Sozzi, P. Taroni, G. Valentini, G. Bottiroli, and A. C. Croce, “Study of mechanical and thermal damage in brain tissue after ablation by Erbium-YAG laser,” Lasers Med. Sci. 12(1), 21–30 (1997).
    [CrossRef]
  7. T. S. Alster, “Clinical and histologic evaluation of six erbium:YAG lasers for cutaneous resurfacing,” Lasers Surg. Med. 24(2), 87–92 (1999).
    [CrossRef] [PubMed]
  8. J. Kiefer, J. Tillein, Q. Ye, R. Klinke, and W. Gstoettner, “Application of carbon dioxide and erbium:yttrium-aluminum-garnet lasers in inner ear surgery: an experimental study,” Otol. Neurotol. 25(3), 400–409 (2004).
    [CrossRef] [PubMed]
  9. G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
    [CrossRef]
  10. M. L. Copeland, R. J. Maciunas, and G. S. Edwards, “Chapter VII,” in Neurosurgical Topics: Advanced Techniques in Central Nervous System Metastases, R. J. Maciunas, ed. (The American Association of Neurological Surgeons, Park Ridge, IL, 1998).
  11. G. S. Edwards, R. D. Pearlstein, M. L. Copeland, M. S. Hutson, K. Latone, A. Spiro, and G. Pasmanik, “6450 nm wavelength tissue ablation using a nanosecond laser based on difference frequency mixing and stimulated Raman scattering,” Opt. Lett. 32(11), 1426–1428 (2007).
    [CrossRef] [PubMed]
  12. M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39(3), 230–236 (2007).
    [CrossRef] [PubMed]
  13. M. S. Hutson, S. A. Hauger, and G. Edwards, “Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free-electron laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 1), 061906 (2002).
    [CrossRef] [PubMed]
  14. G. S. Edwards and M. S. Hutson, “Advantage of the Mark-III FEL for biophysical research and biomedical applications,” J. Synchrotron Radiat. 10(5), 354–357 (2003).
    [CrossRef] [PubMed]
  15. M. S. Hutson, and G. S. Edwards, “Advances in the Physical Understanding of Laser Surgery at 6.45 microns,” in 26th International Free Electron Laser Conference and 11th FEL Users Workshop (Trieste, Italy, 2003) paper: FRAIS01.
  16. V. Venugopalan, N. S. Nishioka, and B. B. Mikić, “Thermodynamic response of soft biological tissues to pulsed infrared-laser irradiation,” Biophys. J. 70(6), 2981–2993 (1996).
    [CrossRef] [PubMed]
  17. J. Tribble, D. C. Lamb, L. Reinisch, and G. Edwards, “Dynamics of gelatin ablation due to free-electron-laser irradiation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7385–7389 (1997).
    [CrossRef]
  18. W. Wagner, A. Sokolow, R. D. Pearlstein, and G. S. Edwards, “Thermal vapor bubble and pressure dynamics during infrared laser ablation of tissue,” Appl. Phys. Lett. 94(1), 013901 (2009).
    [CrossRef]
  19. Y. W. Xiao, M. S. Guo, K. Parker, and M. S. Hutson, “Wavelength-dependent collagen fragmentation during mid-IR laser ablation,” Biophys. J. 91(4), 1424–1432 (2006).
    [CrossRef] [PubMed]
  20. Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
    [CrossRef]
  21. M. A. Mackanos, J. A. Kozub, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics,” Phys. Med. Biol. 50(8), 1871–1883 (2005).
    [CrossRef] [PubMed]
  22. M. A. Mackanos, J. A. Kozub, D. L. Hachey, K. M. Joos, D. L. Ellis, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects,” Phys. Med. Biol. 50(8), 1885–1899 (2005).
    [CrossRef] [PubMed]
  23. J. M. J. Madey, “Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field,” J. Appl. Phys. 42(5), 1906–1930 (1971).
    [CrossRef]
  24. A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
    [CrossRef] [PubMed]
  25. W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
    [PubMed]
  26. B. P. Payne, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “Comparison of pulsed CO2 laser ablation at 10.6 μm and 9.5 μm,” Lasers Surg. Med. 23(1), 1–6 (1998).
    [CrossRef] [PubMed]
  27. Y. Domankevitz, M. S. Lee, and N. S. Nishioka, “Effects of irradiance and spot size on pulsed holmium laser ablation of tissue,” Appl. Opt. 32(4), 569–573 (1993).
    [CrossRef] [PubMed]
  28. U. S. Sathyam, A. Shearin, and S. A. Prahl, “The effects of spot size, pulse energy, and repetition rate on microsecond ablation of gelatin under water,” Proc. SPIE-Int. Soc. Opt. Eng. 2391, 336–344 (1995).
  29. U. S. Sathyam, A. Shearin, E. A. Chasteney, and S. A. Prahl, “Threshold and ablation efficiency studies of microsecond ablation of gelatin under water,” Lasers Surg. Med. 19(4), 397–406 (1996).
    [CrossRef] [PubMed]
  30. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
    [CrossRef] [PubMed]
  31. B. Wolff-Rottke, J. Ihlemann, H. Schmidt, and A. Scholl, “Influence of the laser spot diameter on photo-ablation rates,” Appl. Phys., A Mater. Sci. Process. 60(1), 13–17 (1995).
    [CrossRef]
  32. M. Eyett and D. Bauerle, “Influence of the Beam Spot Size on Ablation Rates in Pulsed-Laser Processing,” Appl. Phys. Lett. 51(24), 2054–2055 (1987).
    [CrossRef]
  33. F. Partovi, J. A. Izatt, R. M. Cothren, C. Kittrell, J. E. Thomas, S. Strikwerda, J. R. Kramer, and M. S. Feld, “A model for thermal ablation of biological tissue using laser radiation,” Lasers Surg. Med. 7(2), 141–154 (1987).
    [CrossRef] [PubMed]
  34. B. Majaron, P. Plestenjak, and M. Lukac, “Thermo-mechanical laser ablation of soft biological tissue: modeling the micro-explosions,” Appl. Phys. B 69, 71–80 (1999).
    [CrossRef]
  35. A. Vogel, I. Apitz, and V. Venugopalan, “Phase transitions, material ejection, and plume dynamics in pulsed laser ablation of soft biological tissues,” in Oscillations, Waves and Interactions, T. Kurz, U. Parlitz, and U. Kaatze, eds. (Universitätsverlag Göttingen, Göttingen, 2007), pp. 217–258.
  36. I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver and skin,” Appl. Phys., A Mater. Sci. Process. 81(2), 329–338 (2005).
    [CrossRef]
  37. A. D. Zweig, “A thermo-mechanical model for laser ablation,” J. Appl. Phys. 70(3), 1684–1691 (1991).
    [CrossRef]
  38. J. P. Cummings and J. T. Walsh., “Tissue tearing caused by pulsed laser-induced ablation pressure,” Appl. Opt. 32(4), 494 (1993).
    [CrossRef] [PubMed]
  39. J. I. Youn, P. Sweet, and G. M. Peavy, “A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 microm,” Lasers Surg. Med. 39(4), 332–340 (2007).
    [CrossRef] [PubMed]
  40. J. M. Auerhammer, R. Walker, A. F. G. van der Meer, and B. Jean, “Dynamic behavior of photoablation products of corneal tissue in the mid-IR: a study with FELIX,” Appl. Phys. B 68(1), 111–119 (1999).
    [CrossRef]

2009 (1)

W. Wagner, A. Sokolow, R. D. Pearlstein, and G. S. Edwards, “Thermal vapor bubble and pressure dynamics during infrared laser ablation of tissue,” Appl. Phys. Lett. 94(1), 013901 (2009).
[CrossRef]

2008 (1)

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
[CrossRef]

2007 (3)

J. I. Youn, P. Sweet, and G. M. Peavy, “A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 microm,” Lasers Surg. Med. 39(4), 332–340 (2007).
[CrossRef] [PubMed]

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39(3), 230–236 (2007).
[CrossRef] [PubMed]

G. S. Edwards, R. D. Pearlstein, M. L. Copeland, M. S. Hutson, K. Latone, A. Spiro, and G. Pasmanik, “6450 nm wavelength tissue ablation using a nanosecond laser based on difference frequency mixing and stimulated Raman scattering,” Opt. Lett. 32(11), 1426–1428 (2007).
[CrossRef] [PubMed]

2006 (2)

Y. W. Xiao, M. S. Guo, K. Parker, and M. S. Hutson, “Wavelength-dependent collagen fragmentation during mid-IR laser ablation,” Biophys. J. 91(4), 1424–1432 (2006).
[CrossRef] [PubMed]

J. I. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependence study of thermal injury and crater morphology,” Lasers Surg. Med. 38(3), 218–228 (2006).
[CrossRef] [PubMed]

2005 (3)

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver and skin,” Appl. Phys., A Mater. Sci. Process. 81(2), 329–338 (2005).
[CrossRef]

M. A. Mackanos, J. A. Kozub, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics,” Phys. Med. Biol. 50(8), 1871–1883 (2005).
[CrossRef] [PubMed]

M. A. Mackanos, J. A. Kozub, D. L. Hachey, K. M. Joos, D. L. Ellis, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects,” Phys. Med. Biol. 50(8), 1885–1899 (2005).
[CrossRef] [PubMed]

2004 (1)

J. Kiefer, J. Tillein, Q. Ye, R. Klinke, and W. Gstoettner, “Application of carbon dioxide and erbium:yttrium-aluminum-garnet lasers in inner ear surgery: an experimental study,” Otol. Neurotol. 25(3), 400–409 (2004).
[CrossRef] [PubMed]

2003 (3)

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

G. S. Edwards and M. S. Hutson, “Advantage of the Mark-III FEL for biophysical research and biomedical applications,” J. Synchrotron Radiat. 10(5), 354–357 (2003).
[CrossRef] [PubMed]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[CrossRef] [PubMed]

2002 (1)

M. S. Hutson, S. A. Hauger, and G. Edwards, “Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free-electron laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 1), 061906 (2002).
[CrossRef] [PubMed]

2000 (2)

K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. 27(3), 191–205 (2000).
[CrossRef] [PubMed]

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

1999 (3)

J. M. Auerhammer, R. Walker, A. F. G. van der Meer, and B. Jean, “Dynamic behavior of photoablation products of corneal tissue in the mid-IR: a study with FELIX,” Appl. Phys. B 68(1), 111–119 (1999).
[CrossRef]

T. S. Alster, “Clinical and histologic evaluation of six erbium:YAG lasers for cutaneous resurfacing,” Lasers Surg. Med. 24(2), 87–92 (1999).
[CrossRef] [PubMed]

B. Majaron, P. Plestenjak, and M. Lukac, “Thermo-mechanical laser ablation of soft biological tissue: modeling the micro-explosions,” Appl. Phys. B 69, 71–80 (1999).
[CrossRef]

1998 (2)

R. A. Hill, Q. Ren, D. C. Nguyen, L. H. Liaw, and M. W. Berns, “Free-electron laser (FEL) ablation of ocular tissues,” Lasers Med. Sci. 13(3), 219–226 (1998).
[CrossRef]

B. P. Payne, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “Comparison of pulsed CO2 laser ablation at 10.6 μm and 9.5 μm,” Lasers Surg. Med. 23(1), 1–6 (1998).
[CrossRef] [PubMed]

1997 (2)

R. Cubeddu, C. Sozzi, P. Taroni, G. Valentini, G. Bottiroli, and A. C. Croce, “Study of mechanical and thermal damage in brain tissue after ablation by Erbium-YAG laser,” Lasers Med. Sci. 12(1), 21–30 (1997).
[CrossRef]

J. Tribble, D. C. Lamb, L. Reinisch, and G. Edwards, “Dynamics of gelatin ablation due to free-electron-laser irradiation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7385–7389 (1997).
[CrossRef]

1996 (3)

V. Venugopalan, N. S. Nishioka, and B. B. Mikić, “Thermodynamic response of soft biological tissues to pulsed infrared-laser irradiation,” Biophys. J. 70(6), 2981–2993 (1996).
[CrossRef] [PubMed]

R. Kaufmann and R. Hibst, “Pulsed erbium:YAG laser ablation in cutaneous surgery,” Lasers Surg. Med. 19(3), 324–330 (1996).
[CrossRef] [PubMed]

U. S. Sathyam, A. Shearin, E. A. Chasteney, and S. A. Prahl, “Threshold and ablation efficiency studies of microsecond ablation of gelatin under water,” Lasers Surg. Med. 19(4), 397–406 (1996).
[CrossRef] [PubMed]

1995 (1)

B. Wolff-Rottke, J. Ihlemann, H. Schmidt, and A. Scholl, “Influence of the laser spot diameter on photo-ablation rates,” Appl. Phys., A Mater. Sci. Process. 60(1), 13–17 (1995).
[CrossRef]

1994 (1)

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O'Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

1993 (2)

1991 (1)

A. D. Zweig, “A thermo-mechanical model for laser ablation,” J. Appl. Phys. 70(3), 1684–1691 (1991).
[CrossRef]

1987 (2)

M. Eyett and D. Bauerle, “Influence of the Beam Spot Size on Ablation Rates in Pulsed-Laser Processing,” Appl. Phys. Lett. 51(24), 2054–2055 (1987).
[CrossRef]

F. Partovi, J. A. Izatt, R. M. Cothren, C. Kittrell, J. E. Thomas, S. Strikwerda, J. R. Kramer, and M. S. Feld, “A model for thermal ablation of biological tissue using laser radiation,” Lasers Surg. Med. 7(2), 141–154 (1987).
[CrossRef] [PubMed]

1981 (1)

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[CrossRef] [PubMed]

1971 (1)

J. M. J. Madey, “Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field,” J. Appl. Phys. 42(5), 1906–1930 (1971).
[CrossRef]

Alster, T. S.

T. S. Alster, “Clinical and histologic evaluation of six erbium:YAG lasers for cutaneous resurfacing,” Lasers Surg. Med. 24(2), 87–92 (1999).
[CrossRef] [PubMed]

Anderson, R. R.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[CrossRef] [PubMed]

Apitz, I.

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver and skin,” Appl. Phys., A Mater. Sci. Process. 81(2), 329–338 (2005).
[CrossRef]

Auerhammer, J. M.

J. M. Auerhammer, R. Walker, A. F. G. van der Meer, and B. Jean, “Dynamic behavior of photoablation products of corneal tissue in the mid-IR: a study with FELIX,” Appl. Phys. B 68(1), 111–119 (1999).
[CrossRef]

Austin, R. H.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Bauerle, D.

M. Eyett and D. Bauerle, “Influence of the Beam Spot Size on Ablation Rates in Pulsed-Laser Processing,” Appl. Phys. Lett. 51(24), 2054–2055 (1987).
[CrossRef]

Bekker, C.

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

Berns, M. W.

R. A. Hill, Q. Ren, D. C. Nguyen, L. H. Liaw, and M. W. Berns, “Free-electron laser (FEL) ablation of ocular tissues,” Lasers Med. Sci. 13(3), 219–226 (1998).
[CrossRef]

Bottiroli, G.

R. Cubeddu, C. Sozzi, P. Taroni, G. Valentini, G. Bottiroli, and A. C. Croce, “Study of mechanical and thermal damage in brain tissue after ablation by Erbium-YAG laser,” Lasers Med. Sci. 12(1), 21–30 (1997).
[CrossRef]

Carroll, F. E.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Casagrande, V. A.

K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. 27(3), 191–205 (2000).
[CrossRef] [PubMed]

Chasteney, E. A.

U. S. Sathyam, A. Shearin, E. A. Chasteney, and S. A. Prahl, “Threshold and ablation efficiency studies of microsecond ablation of gelatin under water,” Lasers Surg. Med. 19(4), 397–406 (1996).
[CrossRef] [PubMed]

Copeland, M.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O'Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Copeland, M. L.

G. S. Edwards, R. D. Pearlstein, M. L. Copeland, M. S. Hutson, K. Latone, A. Spiro, and G. Pasmanik, “6450 nm wavelength tissue ablation using a nanosecond laser based on difference frequency mixing and stimulated Raman scattering,” Opt. Lett. 32(11), 1426–1428 (2007).
[CrossRef] [PubMed]

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Cothren, R. M.

F. Partovi, J. A. Izatt, R. M. Cothren, C. Kittrell, J. E. Thomas, S. Strikwerda, J. R. Kramer, and M. S. Feld, “A model for thermal ablation of biological tissue using laser radiation,” Lasers Surg. Med. 7(2), 141–154 (1987).
[CrossRef] [PubMed]

Couprie, M. E.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Croce, A. C.

R. Cubeddu, C. Sozzi, P. Taroni, G. Valentini, G. Bottiroli, and A. C. Croce, “Study of mechanical and thermal damage in brain tissue after ablation by Erbium-YAG laser,” Lasers Med. Sci. 12(1), 21–30 (1997).
[CrossRef]

Cubeddu, R.

R. Cubeddu, C. Sozzi, P. Taroni, G. Valentini, G. Bottiroli, and A. C. Croce, “Study of mechanical and thermal damage in brain tissue after ablation by Erbium-YAG laser,” Lasers Med. Sci. 12(1), 21–30 (1997).
[CrossRef]

Cummings, J. P.

Davidson, J.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O'Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Domankevitz, Y.

Edwards, G.

M. S. Hutson, S. A. Hauger, and G. Edwards, “Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free-electron laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 1), 061906 (2002).
[CrossRef] [PubMed]

J. Tribble, D. C. Lamb, L. Reinisch, and G. Edwards, “Dynamics of gelatin ablation due to free-electron-laser irradiation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7385–7389 (1997).
[CrossRef]

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O'Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Edwards, G. S.

W. Wagner, A. Sokolow, R. D. Pearlstein, and G. S. Edwards, “Thermal vapor bubble and pressure dynamics during infrared laser ablation of tissue,” Appl. Phys. Lett. 94(1), 013901 (2009).
[CrossRef]

G. S. Edwards, R. D. Pearlstein, M. L. Copeland, M. S. Hutson, K. Latone, A. Spiro, and G. Pasmanik, “6450 nm wavelength tissue ablation using a nanosecond laser based on difference frequency mixing and stimulated Raman scattering,” Opt. Lett. 32(11), 1426–1428 (2007).
[CrossRef] [PubMed]

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

G. S. Edwards and M. S. Hutson, “Advantage of the Mark-III FEL for biophysical research and biomedical applications,” J. Synchrotron Radiat. 10(5), 354–357 (2003).
[CrossRef] [PubMed]

Eiferman, R. A.

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

Ellis, D. L.

M. A. Mackanos, J. A. Kozub, D. L. Hachey, K. M. Joos, D. L. Ellis, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects,” Phys. Med. Biol. 50(8), 1885–1899 (2005).
[CrossRef] [PubMed]

Eyett, M.

M. Eyett and D. Bauerle, “Influence of the Beam Spot Size on Ablation Rates in Pulsed-Laser Processing,” Appl. Phys. Lett. 51(24), 2054–2055 (1987).
[CrossRef]

Feld, M. S.

F. Partovi, J. A. Izatt, R. M. Cothren, C. Kittrell, J. E. Thomas, S. Strikwerda, J. R. Kramer, and M. S. Feld, “A model for thermal ablation of biological tissue using laser radiation,” Lasers Surg. Med. 7(2), 141–154 (1987).
[CrossRef] [PubMed]

Gabella, W. E.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Gstoettner, W.

J. Kiefer, J. Tillein, Q. Ye, R. Klinke, and W. Gstoettner, “Application of carbon dioxide and erbium:yttrium-aluminum-garnet lasers in inner ear surgery: an experimental study,” Otol. Neurotol. 25(3), 400–409 (2004).
[CrossRef] [PubMed]

Guo, M.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
[CrossRef]

Guo, M. S.

Y. W. Xiao, M. S. Guo, K. Parker, and M. S. Hutson, “Wavelength-dependent collagen fragmentation during mid-IR laser ablation,” Biophys. J. 91(4), 1424–1432 (2006).
[CrossRef] [PubMed]

Hachey, D. L.

M. A. Mackanos, J. A. Kozub, D. L. Hachey, K. M. Joos, D. L. Ellis, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects,” Phys. Med. Biol. 50(8), 1885–1899 (2005).
[CrossRef] [PubMed]

Haglund, R. F.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Hauger, S. A.

M. S. Hutson, S. A. Hauger, and G. Edwards, “Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free-electron laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 1), 061906 (2002).
[CrossRef] [PubMed]

Hibst, R.

R. Kaufmann and R. Hibst, “Pulsed erbium:YAG laser ablation in cutaneous surgery,” Lasers Surg. Med. 19(3), 324–330 (1996).
[CrossRef] [PubMed]

Hill, R. A.

R. A. Hill, Q. Ren, D. C. Nguyen, L. H. Liaw, and M. W. Berns, “Free-electron laser (FEL) ablation of ocular tissues,” Lasers Med. Sci. 13(3), 219–226 (1998).
[CrossRef]

Hoffman, H. J.

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

Hooper, B. A.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Hutson, M. S.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
[CrossRef]

G. S. Edwards, R. D. Pearlstein, M. L. Copeland, M. S. Hutson, K. Latone, A. Spiro, and G. Pasmanik, “6450 nm wavelength tissue ablation using a nanosecond laser based on difference frequency mixing and stimulated Raman scattering,” Opt. Lett. 32(11), 1426–1428 (2007).
[CrossRef] [PubMed]

Y. W. Xiao, M. S. Guo, K. Parker, and M. S. Hutson, “Wavelength-dependent collagen fragmentation during mid-IR laser ablation,” Biophys. J. 91(4), 1424–1432 (2006).
[CrossRef] [PubMed]

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

G. S. Edwards and M. S. Hutson, “Advantage of the Mark-III FEL for biophysical research and biomedical applications,” J. Synchrotron Radiat. 10(5), 354–357 (2003).
[CrossRef] [PubMed]

M. S. Hutson, S. A. Hauger, and G. Edwards, “Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free-electron laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 1), 061906 (2002).
[CrossRef] [PubMed]

Ihlemann, J.

B. Wolff-Rottke, J. Ihlemann, H. Schmidt, and A. Scholl, “Influence of the laser spot diameter on photo-ablation rates,” Appl. Phys., A Mater. Sci. Process. 60(1), 13–17 (1995).
[CrossRef]

Izatt, J. A.

F. Partovi, J. A. Izatt, R. M. Cothren, C. Kittrell, J. E. Thomas, S. Strikwerda, J. R. Kramer, and M. S. Feld, “A model for thermal ablation of biological tissue using laser radiation,” Lasers Surg. Med. 7(2), 141–154 (1987).
[CrossRef] [PubMed]

Jansen, E. D.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39(3), 230–236 (2007).
[CrossRef] [PubMed]

M. A. Mackanos, J. A. Kozub, D. L. Hachey, K. M. Joos, D. L. Ellis, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects,” Phys. Med. Biol. 50(8), 1885–1899 (2005).
[CrossRef] [PubMed]

M. A. Mackanos, J. A. Kozub, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics,” Phys. Med. Biol. 50(8), 1871–1883 (2005).
[CrossRef] [PubMed]

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Jean, B.

J. M. Auerhammer, R. Walker, A. F. G. van der Meer, and B. Jean, “Dynamic behavior of photoablation products of corneal tissue in the mid-IR: a study with FELIX,” Appl. Phys. B 68(1), 111–119 (1999).
[CrossRef]

Johnson, B.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O'Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Joos, K. M.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39(3), 230–236 (2007).
[CrossRef] [PubMed]

M. A. Mackanos, J. A. Kozub, D. L. Hachey, K. M. Joos, D. L. Ellis, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects,” Phys. Med. Biol. 50(8), 1885–1899 (2005).
[CrossRef] [PubMed]

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. 27(3), 191–205 (2000).
[CrossRef] [PubMed]

Kaufmann, R.

R. Kaufmann and R. Hibst, “Pulsed erbium:YAG laser ablation in cutaneous surgery,” Lasers Surg. Med. 19(3), 324–330 (1996).
[CrossRef] [PubMed]

Kiefer, J.

J. Kiefer, J. Tillein, Q. Ye, R. Klinke, and W. Gstoettner, “Application of carbon dioxide and erbium:yttrium-aluminum-garnet lasers in inner ear surgery: an experimental study,” Otol. Neurotol. 25(3), 400–409 (2004).
[CrossRef] [PubMed]

Kiehart, D. P.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Kittrell, C.

F. Partovi, J. A. Izatt, R. M. Cothren, C. Kittrell, J. E. Thomas, S. Strikwerda, J. R. Kramer, and M. S. Feld, “A model for thermal ablation of biological tissue using laser radiation,” Lasers Surg. Med. 7(2), 141–154 (1987).
[CrossRef] [PubMed]

Klinke, R.

J. Kiefer, J. Tillein, Q. Ye, R. Klinke, and W. Gstoettner, “Application of carbon dioxide and erbium:yttrium-aluminum-garnet lasers in inner ear surgery: an experimental study,” Otol. Neurotol. 25(3), 400–409 (2004).
[CrossRef] [PubMed]

Kozub, J. A.

M. A. Mackanos, J. A. Kozub, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics,” Phys. Med. Biol. 50(8), 1871–1883 (2005).
[CrossRef] [PubMed]

M. A. Mackanos, J. A. Kozub, D. L. Hachey, K. M. Joos, D. L. Ellis, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects,” Phys. Med. Biol. 50(8), 1885–1899 (2005).
[CrossRef] [PubMed]

Kramer, J. R.

F. Partovi, J. A. Izatt, R. M. Cothren, C. Kittrell, J. E. Thomas, S. Strikwerda, J. R. Kramer, and M. S. Feld, “A model for thermal ablation of biological tissue using laser radiation,” Lasers Surg. Med. 7(2), 141–154 (1987).
[CrossRef] [PubMed]

Lamb, D. C.

J. Tribble, D. C. Lamb, L. Reinisch, and G. Edwards, “Dynamics of gelatin ablation due to free-electron-laser irradiation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7385–7389 (1997).
[CrossRef]

Latone, K.

Lee, M. S.

Liaw, L. H.

R. A. Hill, Q. Ren, D. C. Nguyen, L. H. Liaw, and M. W. Berns, “Free-electron laser (FEL) ablation of ocular tissues,” Lasers Med. Sci. 13(3), 219–226 (1998).
[CrossRef]

Lindau, I.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Logan, R.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O'Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Lukac, M.

B. Majaron, P. Plestenjak, and M. Lukac, “Thermo-mechanical laser ablation of soft biological tissue: modeling the micro-explosions,” Appl. Phys. B 69, 71–80 (1999).
[CrossRef]

Maciunas, R.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O'Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Mackanos, M. A.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39(3), 230–236 (2007).
[CrossRef] [PubMed]

M. A. Mackanos, J. A. Kozub, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics,” Phys. Med. Biol. 50(8), 1871–1883 (2005).
[CrossRef] [PubMed]

M. A. Mackanos, J. A. Kozub, D. L. Hachey, K. M. Joos, D. L. Ellis, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects,” Phys. Med. Biol. 50(8), 1885–1899 (2005).
[CrossRef] [PubMed]

Madey, J. M. J.

J. M. J. Madey, “Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field,” J. Appl. Phys. 42(5), 1906–1930 (1971).
[CrossRef]

Majaron, B.

B. Majaron, P. Plestenjak, and M. Lukac, “Thermo-mechanical laser ablation of soft biological tissue: modeling the micro-explosions,” Appl. Phys. B 69, 71–80 (1999).
[CrossRef]

Mendenhall, M.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O'Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Miao, J.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Mikic, B. B.

B. P. Payne, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “Comparison of pulsed CO2 laser ablation at 10.6 μm and 9.5 μm,” Lasers Surg. Med. 23(1), 1–6 (1998).
[CrossRef] [PubMed]

V. Venugopalan, N. S. Nishioka, and B. B. Mikić, “Thermodynamic response of soft biological tissues to pulsed infrared-laser irradiation,” Biophys. J. 70(6), 2981–2993 (1996).
[CrossRef] [PubMed]

Nguyen, D. C.

R. A. Hill, Q. Ren, D. C. Nguyen, L. H. Liaw, and M. W. Berns, “Free-electron laser (FEL) ablation of ocular tissues,” Lasers Med. Sci. 13(3), 219–226 (1998).
[CrossRef]

Nishioka, N. S.

B. P. Payne, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “Comparison of pulsed CO2 laser ablation at 10.6 μm and 9.5 μm,” Lasers Surg. Med. 23(1), 1–6 (1998).
[CrossRef] [PubMed]

V. Venugopalan, N. S. Nishioka, and B. B. Mikić, “Thermodynamic response of soft biological tissues to pulsed infrared-laser irradiation,” Biophys. J. 70(6), 2981–2993 (1996).
[CrossRef] [PubMed]

Y. Domankevitz, M. S. Lee, and N. S. Nishioka, “Effects of irradiance and spot size on pulsed holmium laser ablation of tissue,” Appl. Opt. 32(4), 569–573 (1993).
[CrossRef] [PubMed]

Nordquist, R. E.

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

O'Day, D.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O'Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Ossoff, R.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O'Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Parker, K.

Y. W. Xiao, M. S. Guo, K. Parker, and M. S. Hutson, “Wavelength-dependent collagen fragmentation during mid-IR laser ablation,” Biophys. J. 91(4), 1424–1432 (2006).
[CrossRef] [PubMed]

Parrish, J. A.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[CrossRef] [PubMed]

Partovi, F.

F. Partovi, J. A. Izatt, R. M. Cothren, C. Kittrell, J. E. Thomas, S. Strikwerda, J. R. Kramer, and M. S. Feld, “A model for thermal ablation of biological tissue using laser radiation,” Lasers Surg. Med. 7(2), 141–154 (1987).
[CrossRef] [PubMed]

Pasmanik, G.

Payne, B. P.

B. P. Payne, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “Comparison of pulsed CO2 laser ablation at 10.6 μm and 9.5 μm,” Lasers Surg. Med. 23(1), 1–6 (1998).
[CrossRef] [PubMed]

Pearlstein, R. D.

Peavy, G. M.

J. I. Youn, P. Sweet, and G. M. Peavy, “A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 microm,” Lasers Surg. Med. 39(4), 332–340 (2007).
[CrossRef] [PubMed]

J. I. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependence study of thermal injury and crater morphology,” Lasers Surg. Med. 38(3), 218–228 (2006).
[CrossRef] [PubMed]

Plestenjak, P.

B. Majaron, P. Plestenjak, and M. Lukac, “Thermo-mechanical laser ablation of soft biological tissue: modeling the micro-explosions,” Appl. Phys. B 69, 71–80 (1999).
[CrossRef]

Polavarapu, P. L.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
[CrossRef]

Prahl, S. A.

U. S. Sathyam, A. Shearin, E. A. Chasteney, and S. A. Prahl, “Threshold and ablation efficiency studies of microsecond ablation of gelatin under water,” Lasers Surg. Med. 19(4), 397–406 (1996).
[CrossRef] [PubMed]

Pratisto, H. S.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Reinisch, L.

J. Tribble, D. C. Lamb, L. Reinisch, and G. Edwards, “Dynamics of gelatin ablation due to free-electron-laser irradiation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7385–7389 (1997).
[CrossRef]

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O'Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Ren, Q.

R. A. Hill, Q. Ren, D. C. Nguyen, L. H. Liaw, and M. W. Berns, “Free-electron laser (FEL) ablation of ocular tissues,” Lasers Med. Sci. 13(3), 219–226 (1998).
[CrossRef]

Sathyam, U. S.

U. S. Sathyam, A. Shearin, E. A. Chasteney, and S. A. Prahl, “Threshold and ablation efficiency studies of microsecond ablation of gelatin under water,” Lasers Surg. Med. 19(4), 397–406 (1996).
[CrossRef] [PubMed]

Schmidt, H.

B. Wolff-Rottke, J. Ihlemann, H. Schmidt, and A. Scholl, “Influence of the laser spot diameter on photo-ablation rates,” Appl. Phys., A Mater. Sci. Process. 60(1), 13–17 (1995).
[CrossRef]

Scholl, A.

B. Wolff-Rottke, J. Ihlemann, H. Schmidt, and A. Scholl, “Influence of the laser spot diameter on photo-ablation rates,” Appl. Phys., A Mater. Sci. Process. 60(1), 13–17 (1995).
[CrossRef]

Schwettman, H. A.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39(3), 230–236 (2007).
[CrossRef] [PubMed]

Shanmugam, G.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
[CrossRef]

Shearin, A.

U. S. Sathyam, A. Shearin, E. A. Chasteney, and S. A. Prahl, “Threshold and ablation efficiency studies of microsecond ablation of gelatin under water,” Lasers Surg. Med. 19(4), 397–406 (1996).
[CrossRef] [PubMed]

Shen, J. H.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. 27(3), 191–205 (2000).
[CrossRef] [PubMed]

Shetlar, D. J.

K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. 27(3), 191–205 (2000).
[CrossRef] [PubMed]

Simanovskii, D.

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39(3), 230–236 (2007).
[CrossRef] [PubMed]

Sokolow, A.

W. Wagner, A. Sokolow, R. D. Pearlstein, and G. S. Edwards, “Thermal vapor bubble and pressure dynamics during infrared laser ablation of tissue,” Appl. Phys. Lett. 94(1), 013901 (2009).
[CrossRef]

Sozzi, C.

R. Cubeddu, C. Sozzi, P. Taroni, G. Valentini, G. Bottiroli, and A. C. Croce, “Study of mechanical and thermal damage in brain tissue after ablation by Erbium-YAG laser,” Lasers Med. Sci. 12(1), 21–30 (1997).
[CrossRef]

Spiro, A.

Strikwerda, S.

F. Partovi, J. A. Izatt, R. M. Cothren, C. Kittrell, J. E. Thomas, S. Strikwerda, J. R. Kramer, and M. S. Feld, “A model for thermal ablation of biological tissue using laser radiation,” Lasers Surg. Med. 7(2), 141–154 (1987).
[CrossRef] [PubMed]

Sweet, P.

J. I. Youn, P. Sweet, and G. M. Peavy, “A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 microm,” Lasers Surg. Med. 39(4), 332–340 (2007).
[CrossRef] [PubMed]

J. I. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependence study of thermal injury and crater morphology,” Lasers Surg. Med. 38(3), 218–228 (2006).
[CrossRef] [PubMed]

Taroni, P.

R. Cubeddu, C. Sozzi, P. Taroni, G. Valentini, G. Bottiroli, and A. C. Croce, “Study of mechanical and thermal damage in brain tissue after ablation by Erbium-YAG laser,” Lasers Med. Sci. 12(1), 21–30 (1997).
[CrossRef]

Telfair, W. B.

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

Thomas, J. E.

F. Partovi, J. A. Izatt, R. M. Cothren, C. Kittrell, J. E. Thomas, S. Strikwerda, J. R. Kramer, and M. S. Feld, “A model for thermal ablation of biological tissue using laser radiation,” Lasers Surg. Med. 7(2), 141–154 (1987).
[CrossRef] [PubMed]

Tillein, J.

J. Kiefer, J. Tillein, Q. Ye, R. Klinke, and W. Gstoettner, “Application of carbon dioxide and erbium:yttrium-aluminum-garnet lasers in inner ear surgery: an experimental study,” Otol. Neurotol. 25(3), 400–409 (2004).
[CrossRef] [PubMed]

Tokutake, Y.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Tribble, J.

J. Tribble, D. C. Lamb, L. Reinisch, and G. Edwards, “Dynamics of gelatin ablation due to free-electron-laser irradiation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7385–7389 (1997).
[CrossRef]

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O'Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Valentini, G.

R. Cubeddu, C. Sozzi, P. Taroni, G. Valentini, G. Bottiroli, and A. C. Croce, “Study of mechanical and thermal damage in brain tissue after ablation by Erbium-YAG laser,” Lasers Med. Sci. 12(1), 21–30 (1997).
[CrossRef]

van der Meer, A. F. G.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

J. M. Auerhammer, R. Walker, A. F. G. van der Meer, and B. Jean, “Dynamic behavior of photoablation products of corneal tissue in the mid-IR: a study with FELIX,” Appl. Phys. B 68(1), 111–119 (1999).
[CrossRef]

Venugopalan, V.

J. I. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependence study of thermal injury and crater morphology,” Lasers Surg. Med. 38(3), 218–228 (2006).
[CrossRef] [PubMed]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[CrossRef] [PubMed]

B. P. Payne, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “Comparison of pulsed CO2 laser ablation at 10.6 μm and 9.5 μm,” Lasers Surg. Med. 23(1), 1–6 (1998).
[CrossRef] [PubMed]

V. Venugopalan, N. S. Nishioka, and B. B. Mikić, “Thermodynamic response of soft biological tissues to pulsed infrared-laser irradiation,” Biophys. J. 70(6), 2981–2993 (1996).
[CrossRef] [PubMed]

Vogel, A.

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver and skin,” Appl. Phys., A Mater. Sci. Process. 81(2), 329–338 (2005).
[CrossRef]

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[CrossRef] [PubMed]

Wagner, W.

W. Wagner, A. Sokolow, R. D. Pearlstein, and G. S. Edwards, “Thermal vapor bubble and pressure dynamics during infrared laser ablation of tissue,” Appl. Phys. Lett. 94(1), 013901 (2009).
[CrossRef]

Walker, R.

J. M. Auerhammer, R. Walker, A. F. G. van der Meer, and B. Jean, “Dynamic behavior of photoablation products of corneal tissue in the mid-IR: a study with FELIX,” Appl. Phys. B 68(1), 111–119 (1999).
[CrossRef]

Walsh, J. T.

Werkhaven, J.

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O'Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Wolff-Rottke, B.

B. Wolff-Rottke, J. Ihlemann, H. Schmidt, and A. Scholl, “Influence of the laser spot diameter on photo-ablation rates,” Appl. Phys., A Mater. Sci. Process. 60(1), 13–17 (1995).
[CrossRef]

Xiao, Y.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
[CrossRef]

Xiao, Y. W.

Y. W. Xiao, M. S. Guo, K. Parker, and M. S. Hutson, “Wavelength-dependent collagen fragmentation during mid-IR laser ablation,” Biophys. J. 91(4), 1424–1432 (2006).
[CrossRef] [PubMed]

Xie, A.

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Ye, Q.

J. Kiefer, J. Tillein, Q. Ye, R. Klinke, and W. Gstoettner, “Application of carbon dioxide and erbium:yttrium-aluminum-garnet lasers in inner ear surgery: an experimental study,” Otol. Neurotol. 25(3), 400–409 (2004).
[CrossRef] [PubMed]

Yoder, P. R.

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

Youn, J. I.

J. I. Youn, P. Sweet, and G. M. Peavy, “A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 microm,” Lasers Surg. Med. 39(4), 332–340 (2007).
[CrossRef] [PubMed]

J. I. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependence study of thermal injury and crater morphology,” Lasers Surg. Med. 38(3), 218–228 (2006).
[CrossRef] [PubMed]

Zenzie, H. H.

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

Zhang, P.

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
[CrossRef]

Zweig, A. D.

A. D. Zweig, “A thermo-mechanical model for laser ablation,” J. Appl. Phys. 70(3), 1684–1691 (1991).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

J. M. Auerhammer, R. Walker, A. F. G. van der Meer, and B. Jean, “Dynamic behavior of photoablation products of corneal tissue in the mid-IR: a study with FELIX,” Appl. Phys. B 68(1), 111–119 (1999).
[CrossRef]

B. Majaron, P. Plestenjak, and M. Lukac, “Thermo-mechanical laser ablation of soft biological tissue: modeling the micro-explosions,” Appl. Phys. B 69, 71–80 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

M. Eyett and D. Bauerle, “Influence of the Beam Spot Size on Ablation Rates in Pulsed-Laser Processing,” Appl. Phys. Lett. 51(24), 2054–2055 (1987).
[CrossRef]

W. Wagner, A. Sokolow, R. D. Pearlstein, and G. S. Edwards, “Thermal vapor bubble and pressure dynamics during infrared laser ablation of tissue,” Appl. Phys. Lett. 94(1), 013901 (2009).
[CrossRef]

Appl. Phys., A Mater. Sci. Process. (2)

B. Wolff-Rottke, J. Ihlemann, H. Schmidt, and A. Scholl, “Influence of the laser spot diameter on photo-ablation rates,” Appl. Phys., A Mater. Sci. Process. 60(1), 13–17 (1995).
[CrossRef]

I. Apitz and A. Vogel, “Material ejection in nanosecond Er:YAG laser ablation of water, liver and skin,” Appl. Phys., A Mater. Sci. Process. 81(2), 329–338 (2005).
[CrossRef]

Biophys. J. (3)

Y. W. Xiao, M. S. Guo, K. Parker, and M. S. Hutson, “Wavelength-dependent collagen fragmentation during mid-IR laser ablation,” Biophys. J. 91(4), 1424–1432 (2006).
[CrossRef] [PubMed]

Y. Xiao, M. Guo, P. Zhang, G. Shanmugam, P. L. Polavarapu, and M. S. Hutson, “Wavelength-dependent conformational changes in collagen after mid-infrared laser ablation of cornea,” Biophys. J. 94(4), 1359–1366 (2008).
[CrossRef]

V. Venugopalan, N. S. Nishioka, and B. B. Mikić, “Thermodynamic response of soft biological tissues to pulsed infrared-laser irradiation,” Biophys. J. 70(6), 2981–2993 (1996).
[CrossRef] [PubMed]

Chem. Rev. (1)

A. Vogel and V. Venugopalan, “Mechanisms of pulsed laser ablation of biological tissues,” Chem. Rev. 103(2), 577–644 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

A. D. Zweig, “A thermo-mechanical model for laser ablation,” J. Appl. Phys. 70(3), 1684–1691 (1991).
[CrossRef]

J. M. J. Madey, “Stimulated Emission of Bremsstrahlung in a Periodic Magnetic Field,” J. Appl. Phys. 42(5), 1906–1930 (1971).
[CrossRef]

J. Invest. Dermatol. (1)

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77(1), 13–19 (1981).
[CrossRef] [PubMed]

J. Refract. Surg. (1)

W. B. Telfair, C. Bekker, H. J. Hoffman, P. R. Yoder, R. E. Nordquist, R. A. Eiferman, and H. H. Zenzie, “Histological comparison of corneal ablation with Er:YAG laser, Nd:YAG optical parametric oscillator, and excimer laser,” J. Refract. Surg. 16(1), 40–50 (2000).
[PubMed]

J. Synchrotron Radiat. (1)

G. S. Edwards and M. S. Hutson, “Advantage of the Mark-III FEL for biophysical research and biomedical applications,” J. Synchrotron Radiat. 10(5), 354–357 (2003).
[CrossRef] [PubMed]

Lasers Med. Sci. (2)

R. A. Hill, Q. Ren, D. C. Nguyen, L. H. Liaw, and M. W. Berns, “Free-electron laser (FEL) ablation of ocular tissues,” Lasers Med. Sci. 13(3), 219–226 (1998).
[CrossRef]

R. Cubeddu, C. Sozzi, P. Taroni, G. Valentini, G. Bottiroli, and A. C. Croce, “Study of mechanical and thermal damage in brain tissue after ablation by Erbium-YAG laser,” Lasers Med. Sci. 12(1), 21–30 (1997).
[CrossRef]

Lasers Surg. Med. (9)

T. S. Alster, “Clinical and histologic evaluation of six erbium:YAG lasers for cutaneous resurfacing,” Lasers Surg. Med. 24(2), 87–92 (1999).
[CrossRef] [PubMed]

R. Kaufmann and R. Hibst, “Pulsed erbium:YAG laser ablation in cutaneous surgery,” Lasers Surg. Med. 19(3), 324–330 (1996).
[CrossRef] [PubMed]

U. S. Sathyam, A. Shearin, E. A. Chasteney, and S. A. Prahl, “Threshold and ablation efficiency studies of microsecond ablation of gelatin under water,” Lasers Surg. Med. 19(4), 397–406 (1996).
[CrossRef] [PubMed]

F. Partovi, J. A. Izatt, R. M. Cothren, C. Kittrell, J. E. Thomas, S. Strikwerda, J. R. Kramer, and M. S. Feld, “A model for thermal ablation of biological tissue using laser radiation,” Lasers Surg. Med. 7(2), 141–154 (1987).
[CrossRef] [PubMed]

J. I. Youn, P. Sweet, and G. M. Peavy, “A comparison of mass removal, thermal injury, and crater morphology of cortical bone ablation using wavelengths 2.79, 2.9, 6.1, and 6.45 microm,” Lasers Surg. Med. 39(4), 332–340 (2007).
[CrossRef] [PubMed]

M. A. Mackanos, D. Simanovskii, K. M. Joos, H. A. Schwettman, and E. D. Jansen, “Mid infrared optical parametric oscillator (OPO) as a viable alternative to tissue ablation with the free electron laser (FEL),” Lasers Surg. Med. 39(3), 230–236 (2007).
[CrossRef] [PubMed]

B. P. Payne, N. S. Nishioka, B. B. Mikic, and V. Venugopalan, “Comparison of pulsed CO2 laser ablation at 10.6 μm and 9.5 μm,” Lasers Surg. Med. 23(1), 1–6 (1998).
[CrossRef] [PubMed]

J. I. Youn, P. Sweet, G. M. Peavy, and V. Venugopalan, “Mid-IR laser ablation of articular and fibro-cartilage: a wavelength dependence study of thermal injury and crater morphology,” Lasers Surg. Med. 38(3), 218–228 (2006).
[CrossRef] [PubMed]

K. M. Joos, J. H. Shen, D. J. Shetlar, and V. A. Casagrande, “Optic nerve sheath fenestration with a novel wavelength produced by the free electron laser (FEL),” Lasers Surg. Med. 27(3), 191–205 (2000).
[CrossRef] [PubMed]

Nature (1)

G. Edwards, R. Logan, M. Copeland, L. Reinisch, J. Davidson, B. Johnson, R. Maciunas, M. Mendenhall, R. Ossoff, J. Tribble, J. Werkhaven, and D. O'Day, “Tissue ablation by a free-electron laser tuned to the amide II band,” Nature 371(6496), 416–419 (1994).
[CrossRef] [PubMed]

Opt. Lett. (1)

Otol. Neurotol. (1)

J. Kiefer, J. Tillein, Q. Ye, R. Klinke, and W. Gstoettner, “Application of carbon dioxide and erbium:yttrium-aluminum-garnet lasers in inner ear surgery: an experimental study,” Otol. Neurotol. 25(3), 400–409 (2004).
[CrossRef] [PubMed]

Phys. Med. Biol. (2)

M. A. Mackanos, J. A. Kozub, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: ablation metrics,” Phys. Med. Biol. 50(8), 1871–1883 (2005).
[CrossRef] [PubMed]

M. A. Mackanos, J. A. Kozub, D. L. Hachey, K. M. Joos, D. L. Ellis, and E. D. Jansen, “The effect of free-electron laser pulse structure on mid-infrared soft-tissue ablation: biological effects,” Phys. Med. Biol. 50(8), 1885–1899 (2005).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. S. Hutson, S. A. Hauger, and G. Edwards, “Thermal diffusion and chemical kinetics in laminar biomaterial due to heating by a free-electron laser,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6 Pt 1), 061906 (2002).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. Tribble, D. C. Lamb, L. Reinisch, and G. Edwards, “Dynamics of gelatin ablation due to free-electron-laser irradiation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 55(6), 7385–7389 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

G. S. Edwards, R. H. Austin, F. E. Carroll, M. L. Copeland, M. E. Couprie, W. E. Gabella, R. F. Haglund, B. A. Hooper, M. S. Hutson, E. D. Jansen, K. M. Joos, D. P. Kiehart, I. Lindau, J. Miao, H. S. Pratisto, J. H. Shen, Y. Tokutake, A. F. G. van der Meer, and A. Xie, “Free-electron-laser-based biophysical and biomedical instrumentation,” Rev. Sci. Instrum. 74(7), 3207–3245 (2003).
[CrossRef]

Other (4)

M. L. Copeland, R. J. Maciunas, and G. S. Edwards, “Chapter VII,” in Neurosurgical Topics: Advanced Techniques in Central Nervous System Metastases, R. J. Maciunas, ed. (The American Association of Neurological Surgeons, Park Ridge, IL, 1998).

U. S. Sathyam, A. Shearin, and S. A. Prahl, “The effects of spot size, pulse energy, and repetition rate on microsecond ablation of gelatin under water,” Proc. SPIE-Int. Soc. Opt. Eng. 2391, 336–344 (1995).

A. Vogel, I. Apitz, and V. Venugopalan, “Phase transitions, material ejection, and plume dynamics in pulsed laser ablation of soft biological tissues,” in Oscillations, Waves and Interactions, T. Kurz, U. Parlitz, and U. Kaatze, eds. (Universitätsverlag Göttingen, Göttingen, 2007), pp. 217–258.

M. S. Hutson, and G. S. Edwards, “Advances in the Physical Understanding of Laser Surgery at 6.45 microns,” in 26th International Free Electron Laser Conference and 11th FEL Users Workshop (Trieste, Italy, 2003) paper: FRAIS01.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Wavelength, fluence and spot-size dependence of the mean etch depth per pulse. (a) Several wavelengths with matched absorption coefficients. Each wavelength was focused with the same lens and thus has a different 1/e 2 radius at the beam waist (w, noted in the legend). Open (closed) symbols are used for predominantly protein- (water)-targeting wavelengths. (b) A single wavelength focused with several different lenses to yield different spot-sizes. (c, d) Two wavelengths with distinct differential absorption, but closely matched spot sizes. Error bars correspond to ± one standard deviation.

Fig. 2
Fig. 2

Wavelength and spot-size dependence for the Hibst model parameters: (a) heat of ablation; (b) threshold fluence. Open (closed) symbols are used for predominantly protein- (water)-targeting wavelengths. The error bars denote 95% confidence limits. The two overlapping lines in A correspond to the best fits from ANCOVA with a 1/w 2 covariate.

Fig. 3
Fig. 3

Wavelength, spot-size and fluence dependence of thermomechanical collateral damage. (a) Selected histological images after FEL ablation of cornea at λ = 2.77 µm, w = 50 µm, and Φ = 50, 100 and 200 J/cm2 (respectively from left to right). (b) Similar images after ablation at the same spot size and fluence with λ = 6.45 µm. (c) Collateral damage versus fluence for matched spot sizes. Most points correspond to w = 50 µm. Exceptions are in grey and had w = 90 µm. (d) Collateral damage at matched fluence (50-60 J/cm2) for different spot sizes. For each set of conditions, the distribution of collateral damage thickness is characterized by its median value (squares), mean value (horizontal dashes) and 1st to 3rd quartile boundaries (vertical lines).

Fig. 4
Fig. 4

Bright-field images of the pressure wave and vapor/debris plume during FEL ablation of cornea at Φ = 15 J/cm2 and λ = 2.77 µm (top) or 6.45 µm (bottom). Each 3 × 3 set of images has columns for different focusing lenses (nominal f = 15, 25 and 50 cm) and rows for different times after the rising edge of the laser pulse (3, 10 and 30 µs). The scale bar at the top left of each image group represents 1 mm. The horizontal bar at the bottom center of each image denotes the measured beam diameter at the tissue surface.

Tables (1)

Tables Icon

Table 1 Effective absorption coefficient, α, for FEL irradiation of corneal stroma a – including estimates for its water and protein components.b

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ(Φ)=Φthγρhablln[1+γ(ΦΦthΦth)]

Metrics