Abstract

We report, for the first time to our knowledge, a novel and simple method for measuring continuous dispersion spectrum of unclamped linear electro-optic (EO) coefficient using a white-light interferometry. This method detects phase changes of the interference patterns with and without an applied electric voltage, and allows a simultaneous measurement of wavelength and polarization dependent EO coefficients of birefringent materials. Both of the unclamped EO coefficients, r 13 T and r 33 T, of a congruent LiNbO3 (LN) crystal have been measured simultaneously with the method, and their continuous dispersion curves have been also obtained.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Onuki, N. Uchida, and T. Saku, “Interferometric Method for Measuring Electro-Optic Coefficients in Crystals,” J. Opt. Soc. Am. B 62(9), 1030–1032 (1972).
    [Crossref]
  2. J. A. de Toro, M. D. Serrano, A. G. Cabanes, and J. M. Cabrera, “Accurate interferometric measurement of electro-optic coefficients: application to quasi-stoichiometric LiNbO3,” Opt. Commun. 154(1-3), 23–27 (1998).
    [Crossref]
  3. M. J. Shin, H. R. Cho, J. H. Kim, S. H. Han, and J. W. Wu, “Optical Interferometric Measurement of the Electro-Optic Coefficient in Nonlinear Optical Polymer Films,” J. Korean Phys. Soc. 31, 99–103 (1997).
  4. C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
    [Crossref]
  5. C. J. Novotny, C. T. Derose, R. A. Norwood, and P. K. L. Yu, “Linear electrooptic coefficient of InP nanowires,” Nano Lett. 8(4), 1020–1025 (2008).
    [Crossref] [PubMed]
  6. D. H. Park, C. H. Lee, and W. N. Herman, “Analysis of multiple reflection effects in reflective measurements of electro-optic coefficients of poled polymers in multilayer structures,” Opt. Express 14(19), 8866–8884 (2006), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-14-19-8866 .
    [Crossref] [PubMed]
  7. K. Takizawa and Y. Yokota; “High Accuracy and High Sensitivity Measurements of the Electrooptic Effects in Undoped and MgO-Doped LiNbO3 Crystals,” Opt. Rev. 13(3), 161–167 (2006).
    [Crossref]
  8. K. Yonekura, L. Jin, and K. Takizawa, “Measurement of Dispersion of Electro-Optic Coefficients r13E and r33E of Non-doped Congruent LiNbO3 Crystal,” Jpn. J. Appl. Phys. 47(7), 5503–5508 (2008).
    [Crossref]
  9. Z. Shen, H. Ye, C. L. Mak, K. H. Wong, W. Shen, and B. Guo, “Measurement of transverse electro-optic coefficient of Sr0.6Ba0.4Nb2O6 thin film grown on MgO substrate with different content of potassium ions,” Thin Solid Films 488(1-2), 40–44 (2005).
    [Crossref]
  10. H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, and K. Wasa, “Electro-optic effects of (Pb, La)(Zr, Ti)O3 thin films prepared by rf planar magnetron sputtering,” Appl. Phys. Lett. 42(10), 867–868 (1983).
    [Crossref]
  11. Y. Jeon and H. S. Kang, “Electro-Optic Coefficient Measurements for ZnxCd1-xTe Single Crystals at 1550 nm Wavelength,” Opt. Rev. 14(6), 373–375 (2007).
    [Crossref]
  12. H. P. Sardesai, W. C. Nunnally, and P. F. Williams, “Interferometric determination of the quadratic electro-optic coefficient of nitrobenzene,” Appl. Opt. 33(10), 1791–1794 (1994).
    [Crossref] [PubMed]
  13. Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
    [Crossref]
  14. A. Mendez, A. Garcia-Cabanes, E. Dieguez, and J. M. Cabrera, “Wavelength dependence of electro-optic coefficients in congruent and quasi-stoichiometric LiNbO3,” Electron. Lett. 35(6), 498–499 (1999).
    [Crossref]
  15. R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
    [Crossref]
  16. S. H. Kim, K. H. Kim, S. H. Lee, S. Lee, M. H. Lee, and E.-H. Lee, “White-light interferometer based on a high-precision chromatic dispersion measurement method,” J. Korean Phys. Soc. 53, 3201–3206 (2008).
    [Crossref]
  17. G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
    [Crossref]

2008 (3)

C. J. Novotny, C. T. Derose, R. A. Norwood, and P. K. L. Yu, “Linear electrooptic coefficient of InP nanowires,” Nano Lett. 8(4), 1020–1025 (2008).
[Crossref] [PubMed]

K. Yonekura, L. Jin, and K. Takizawa, “Measurement of Dispersion of Electro-Optic Coefficients r13E and r33E of Non-doped Congruent LiNbO3 Crystal,” Jpn. J. Appl. Phys. 47(7), 5503–5508 (2008).
[Crossref]

S. H. Kim, K. H. Kim, S. H. Lee, S. Lee, M. H. Lee, and E.-H. Lee, “White-light interferometer based on a high-precision chromatic dispersion measurement method,” J. Korean Phys. Soc. 53, 3201–3206 (2008).
[Crossref]

2007 (2)

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Y. Jeon and H. S. Kang, “Electro-Optic Coefficient Measurements for ZnxCd1-xTe Single Crystals at 1550 nm Wavelength,” Opt. Rev. 14(6), 373–375 (2007).
[Crossref]

2006 (2)

2005 (1)

Z. Shen, H. Ye, C. L. Mak, K. H. Wong, W. Shen, and B. Guo, “Measurement of transverse electro-optic coefficient of Sr0.6Ba0.4Nb2O6 thin film grown on MgO substrate with different content of potassium ions,” Thin Solid Films 488(1-2), 40–44 (2005).
[Crossref]

1999 (1)

A. Mendez, A. Garcia-Cabanes, E. Dieguez, and J. M. Cabrera, “Wavelength dependence of electro-optic coefficients in congruent and quasi-stoichiometric LiNbO3,” Electron. Lett. 35(6), 498–499 (1999).
[Crossref]

1998 (1)

J. A. de Toro, M. D. Serrano, A. G. Cabanes, and J. M. Cabrera, “Accurate interferometric measurement of electro-optic coefficients: application to quasi-stoichiometric LiNbO3,” Opt. Commun. 154(1-3), 23–27 (1998).
[Crossref]

1997 (1)

M. J. Shin, H. R. Cho, J. H. Kim, S. H. Han, and J. W. Wu, “Optical Interferometric Measurement of the Electro-Optic Coefficient in Nonlinear Optical Polymer Films,” J. Korean Phys. Soc. 31, 99–103 (1997).

1994 (1)

1990 (1)

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[Crossref]

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

1984 (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
[Crossref]

1983 (1)

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, and K. Wasa, “Electro-optic effects of (Pb, La)(Zr, Ti)O3 thin films prepared by rf planar magnetron sputtering,” Appl. Phys. Lett. 42(10), 867–868 (1983).
[Crossref]

1972 (1)

K. Onuki, N. Uchida, and T. Saku, “Interferometric Method for Measuring Electro-Optic Coefficients in Crystals,” J. Opt. Soc. Am. B 62(9), 1030–1032 (1972).
[Crossref]

Adachi, H.

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, and K. Wasa, “Electro-optic effects of (Pb, La)(Zr, Ti)O3 thin films prepared by rf planar magnetron sputtering,” Appl. Phys. Lett. 42(10), 867–868 (1983).
[Crossref]

Cabanes, A. G.

J. A. de Toro, M. D. Serrano, A. G. Cabanes, and J. M. Cabrera, “Accurate interferometric measurement of electro-optic coefficients: application to quasi-stoichiometric LiNbO3,” Opt. Commun. 154(1-3), 23–27 (1998).
[Crossref]

Cabrera, J. M.

A. Mendez, A. Garcia-Cabanes, E. Dieguez, and J. M. Cabrera, “Wavelength dependence of electro-optic coefficients in congruent and quasi-stoichiometric LiNbO3,” Electron. Lett. 35(6), 498–499 (1999).
[Crossref]

J. A. de Toro, M. D. Serrano, A. G. Cabanes, and J. M. Cabrera, “Accurate interferometric measurement of electro-optic coefficients: application to quasi-stoichiometric LiNbO3,” Opt. Commun. 154(1-3), 23–27 (1998).
[Crossref]

Cho, H. R.

M. J. Shin, H. R. Cho, J. H. Kim, S. H. Han, and J. W. Wu, “Optical Interferometric Measurement of the Electro-Optic Coefficient in Nonlinear Optical Polymer Films,” J. Korean Phys. Soc. 31, 99–103 (1997).

de Toro, J. A.

J. A. de Toro, M. D. Serrano, A. G. Cabanes, and J. M. Cabrera, “Accurate interferometric measurement of electro-optic coefficients: application to quasi-stoichiometric LiNbO3,” Opt. Commun. 154(1-3), 23–27 (1998).
[Crossref]

Derose, C. T.

C. J. Novotny, C. T. Derose, R. A. Norwood, and P. K. L. Yu, “Linear electrooptic coefficient of InP nanowires,” Nano Lett. 8(4), 1020–1025 (2008).
[Crossref] [PubMed]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Dieguez, E.

A. Mendez, A. Garcia-Cabanes, E. Dieguez, and J. M. Cabrera, “Wavelength dependence of electro-optic coefficients in congruent and quasi-stoichiometric LiNbO3,” Electron. Lett. 35(6), 498–499 (1999).
[Crossref]

Edwards, G. J.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
[Crossref]

Enami, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Garcia-Cabanes, A.

A. Mendez, A. Garcia-Cabanes, E. Dieguez, and J. M. Cabrera, “Wavelength dependence of electro-optic coefficients in congruent and quasi-stoichiometric LiNbO3,” Electron. Lett. 35(6), 498–499 (1999).
[Crossref]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Greenlee, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Guo, B.

Z. Shen, H. Ye, C. L. Mak, K. H. Wong, W. Shen, and B. Guo, “Measurement of transverse electro-optic coefficient of Sr0.6Ba0.4Nb2O6 thin film grown on MgO substrate with different content of potassium ions,” Thin Solid Films 488(1-2), 40–44 (2005).
[Crossref]

Han, S. H.

M. J. Shin, H. R. Cho, J. H. Kim, S. H. Han, and J. W. Wu, “Optical Interferometric Measurement of the Electro-Optic Coefficient in Nonlinear Optical Polymer Films,” J. Korean Phys. Soc. 31, 99–103 (1997).

Herman, W. N.

Jen, A. K.-Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Jeon, Y.

Y. Jeon and H. S. Kang, “Electro-Optic Coefficient Measurements for ZnxCd1-xTe Single Crystals at 1550 nm Wavelength,” Opt. Rev. 14(6), 373–375 (2007).
[Crossref]

Jin, L.

K. Yonekura, L. Jin, and K. Takizawa, “Measurement of Dispersion of Electro-Optic Coefficients r13E and r33E of Non-doped Congruent LiNbO3 Crystal,” Jpn. J. Appl. Phys. 47(7), 5503–5508 (2008).
[Crossref]

Kang, H. S.

Y. Jeon and H. S. Kang, “Electro-Optic Coefficient Measurements for ZnxCd1-xTe Single Crystals at 1550 nm Wavelength,” Opt. Rev. 14(6), 373–375 (2007).
[Crossref]

Kawaguchi, T.

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, and K. Wasa, “Electro-optic effects of (Pb, La)(Zr, Ti)O3 thin films prepared by rf planar magnetron sputtering,” Appl. Phys. Lett. 42(10), 867–868 (1983).
[Crossref]

Kim, J. H.

M. J. Shin, H. R. Cho, J. H. Kim, S. H. Han, and J. W. Wu, “Optical Interferometric Measurement of the Electro-Optic Coefficient in Nonlinear Optical Polymer Films,” J. Korean Phys. Soc. 31, 99–103 (1997).

Kim, K. H.

S. H. Kim, K. H. Kim, S. H. Lee, S. Lee, M. H. Lee, and E.-H. Lee, “White-light interferometer based on a high-precision chromatic dispersion measurement method,” J. Korean Phys. Soc. 53, 3201–3206 (2008).
[Crossref]

Kim, S. H.

S. H. Kim, K. H. Kim, S. H. Lee, S. Lee, M. H. Lee, and E.-H. Lee, “White-light interferometer based on a high-precision chromatic dispersion measurement method,” J. Korean Phys. Soc. 53, 3201–3206 (2008).
[Crossref]

Kim, T. D.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Lawrence, M.

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
[Crossref]

Lee, C. H.

Lee, E.-H.

S. H. Kim, K. H. Kim, S. H. Lee, S. Lee, M. H. Lee, and E.-H. Lee, “White-light interferometer based on a high-precision chromatic dispersion measurement method,” J. Korean Phys. Soc. 53, 3201–3206 (2008).
[Crossref]

Lee, M. H.

S. H. Kim, K. H. Kim, S. H. Lee, S. Lee, M. H. Lee, and E.-H. Lee, “White-light interferometer based on a high-precision chromatic dispersion measurement method,” J. Korean Phys. Soc. 53, 3201–3206 (2008).
[Crossref]

Lee, S.

S. H. Kim, K. H. Kim, S. H. Lee, S. Lee, M. H. Lee, and E.-H. Lee, “White-light interferometer based on a high-precision chromatic dispersion measurement method,” J. Korean Phys. Soc. 53, 3201–3206 (2008).
[Crossref]

Lee, S. H.

S. H. Kim, K. H. Kim, S. H. Lee, S. Lee, M. H. Lee, and E.-H. Lee, “White-light interferometer based on a high-precision chromatic dispersion measurement method,” J. Korean Phys. Soc. 53, 3201–3206 (2008).
[Crossref]

Loychik, C.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Luo, J.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Mak, C. L.

Z. Shen, H. Ye, C. L. Mak, K. H. Wong, W. Shen, and B. Guo, “Measurement of transverse electro-optic coefficient of Sr0.6Ba0.4Nb2O6 thin film grown on MgO substrate with different content of potassium ions,” Thin Solid Films 488(1-2), 40–44 (2005).
[Crossref]

Man, H. T.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[Crossref]

Mathine, D.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Mendez, A.

A. Mendez, A. Garcia-Cabanes, E. Dieguez, and J. M. Cabrera, “Wavelength dependence of electro-optic coefficients in congruent and quasi-stoichiometric LiNbO3,” Electron. Lett. 35(6), 498–499 (1999).
[Crossref]

Norwood, R. A.

C. J. Novotny, C. T. Derose, R. A. Norwood, and P. K. L. Yu, “Linear electrooptic coefficient of InP nanowires,” Nano Lett. 8(4), 1020–1025 (2008).
[Crossref] [PubMed]

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Novotny, C. J.

C. J. Novotny, C. T. Derose, R. A. Norwood, and P. K. L. Yu, “Linear electrooptic coefficient of InP nanowires,” Nano Lett. 8(4), 1020–1025 (2008).
[Crossref] [PubMed]

Nunnally, W. C.

Ohji, K.

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, and K. Wasa, “Electro-optic effects of (Pb, La)(Zr, Ti)O3 thin films prepared by rf planar magnetron sputtering,” Appl. Phys. Lett. 42(10), 867–868 (1983).
[Crossref]

Onuki, K.

K. Onuki, N. Uchida, and T. Saku, “Interferometric Method for Measuring Electro-Optic Coefficients in Crystals,” J. Opt. Soc. Am. B 62(9), 1030–1032 (1972).
[Crossref]

Park, D. H.

Peyghambarian, N.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Saku, T.

K. Onuki, N. Uchida, and T. Saku, “Interferometric Method for Measuring Electro-Optic Coefficients in Crystals,” J. Opt. Soc. Am. B 62(9), 1030–1032 (1972).
[Crossref]

Sardesai, H. P.

Serrano, M. D.

J. A. de Toro, M. D. Serrano, A. G. Cabanes, and J. M. Cabrera, “Accurate interferometric measurement of electro-optic coefficients: application to quasi-stoichiometric LiNbO3,” Opt. Commun. 154(1-3), 23–27 (1998).
[Crossref]

Setsune, K.

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, and K. Wasa, “Electro-optic effects of (Pb, La)(Zr, Ti)O3 thin films prepared by rf planar magnetron sputtering,” Appl. Phys. Lett. 42(10), 867–868 (1983).
[Crossref]

Shen, W.

Z. Shen, H. Ye, C. L. Mak, K. H. Wong, W. Shen, and B. Guo, “Measurement of transverse electro-optic coefficient of Sr0.6Ba0.4Nb2O6 thin film grown on MgO substrate with different content of potassium ions,” Thin Solid Films 488(1-2), 40–44 (2005).
[Crossref]

Shen, Z.

Z. Shen, H. Ye, C. L. Mak, K. H. Wong, W. Shen, and B. Guo, “Measurement of transverse electro-optic coefficient of Sr0.6Ba0.4Nb2O6 thin film grown on MgO substrate with different content of potassium ions,” Thin Solid Films 488(1-2), 40–44 (2005).
[Crossref]

Shin, M. J.

M. J. Shin, H. R. Cho, J. H. Kim, S. H. Han, and J. W. Wu, “Optical Interferometric Measurement of the Electro-Optic Coefficient in Nonlinear Optical Polymer Films,” J. Korean Phys. Soc. 31, 99–103 (1997).

Takizawa, K.

K. Yonekura, L. Jin, and K. Takizawa, “Measurement of Dispersion of Electro-Optic Coefficients r13E and r33E of Non-doped Congruent LiNbO3 Crystal,” Jpn. J. Appl. Phys. 47(7), 5503–5508 (2008).
[Crossref]

K. Takizawa and Y. Yokota; “High Accuracy and High Sensitivity Measurements of the Electrooptic Effects in Undoped and MgO-Doped LiNbO3 Crystals,” Opt. Rev. 13(3), 161–167 (2006).
[Crossref]

Teng, C. C.

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[Crossref]

Tian, Y.

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Uchida, N.

K. Onuki, N. Uchida, and T. Saku, “Interferometric Method for Measuring Electro-Optic Coefficients in Crystals,” J. Opt. Soc. Am. B 62(9), 1030–1032 (1972).
[Crossref]

Wasa, K.

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, and K. Wasa, “Electro-optic effects of (Pb, La)(Zr, Ti)O3 thin films prepared by rf planar magnetron sputtering,” Appl. Phys. Lett. 42(10), 867–868 (1983).
[Crossref]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Williams, P. F.

Wong, K. H.

Z. Shen, H. Ye, C. L. Mak, K. H. Wong, W. Shen, and B. Guo, “Measurement of transverse electro-optic coefficient of Sr0.6Ba0.4Nb2O6 thin film grown on MgO substrate with different content of potassium ions,” Thin Solid Films 488(1-2), 40–44 (2005).
[Crossref]

Wu, J. W.

M. J. Shin, H. R. Cho, J. H. Kim, S. H. Han, and J. W. Wu, “Optical Interferometric Measurement of the Electro-Optic Coefficient in Nonlinear Optical Polymer Films,” J. Korean Phys. Soc. 31, 99–103 (1997).

Ye, H.

Z. Shen, H. Ye, C. L. Mak, K. H. Wong, W. Shen, and B. Guo, “Measurement of transverse electro-optic coefficient of Sr0.6Ba0.4Nb2O6 thin film grown on MgO substrate with different content of potassium ions,” Thin Solid Films 488(1-2), 40–44 (2005).
[Crossref]

Yokota, Y.

K. Takizawa and Y. Yokota; “High Accuracy and High Sensitivity Measurements of the Electrooptic Effects in Undoped and MgO-Doped LiNbO3 Crystals,” Opt. Rev. 13(3), 161–167 (2006).
[Crossref]

Yonekura, K.

K. Yonekura, L. Jin, and K. Takizawa, “Measurement of Dispersion of Electro-Optic Coefficients r13E and r33E of Non-doped Congruent LiNbO3 Crystal,” Jpn. J. Appl. Phys. 47(7), 5503–5508 (2008).
[Crossref]

Yu, P. K. L.

C. J. Novotny, C. T. Derose, R. A. Norwood, and P. K. L. Yu, “Linear electrooptic coefficient of InP nanowires,” Nano Lett. 8(4), 1020–1025 (2008).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. Adachi, T. Kawaguchi, K. Setsune, K. Ohji, and K. Wasa, “Electro-optic effects of (Pb, La)(Zr, Ti)O3 thin films prepared by rf planar magnetron sputtering,” Appl. Phys. Lett. 42(10), 867–868 (1983).
[Crossref]

C. C. Teng and H. T. Man, “Simple reflection technique for measuring the electro-optic coefficient of poled polymers,” Appl. Phys. Lett. 56(18), 1734–1736 (1990).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: Summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[Crossref]

Electron. Lett. (1)

A. Mendez, A. Garcia-Cabanes, E. Dieguez, and J. M. Cabrera, “Wavelength dependence of electro-optic coefficients in congruent and quasi-stoichiometric LiNbO3,” Electron. Lett. 35(6), 498–499 (1999).
[Crossref]

J. Korean Phys. Soc. (2)

M. J. Shin, H. R. Cho, J. H. Kim, S. H. Han, and J. W. Wu, “Optical Interferometric Measurement of the Electro-Optic Coefficient in Nonlinear Optical Polymer Films,” J. Korean Phys. Soc. 31, 99–103 (1997).

S. H. Kim, K. H. Kim, S. H. Lee, S. Lee, M. H. Lee, and E.-H. Lee, “White-light interferometer based on a high-precision chromatic dispersion measurement method,” J. Korean Phys. Soc. 53, 3201–3206 (2008).
[Crossref]

J. Opt. Soc. Am. B (1)

K. Onuki, N. Uchida, and T. Saku, “Interferometric Method for Measuring Electro-Optic Coefficients in Crystals,” J. Opt. Soc. Am. B 62(9), 1030–1032 (1972).
[Crossref]

Jpn. J. Appl. Phys. (1)

K. Yonekura, L. Jin, and K. Takizawa, “Measurement of Dispersion of Electro-Optic Coefficients r13E and r33E of Non-doped Congruent LiNbO3 Crystal,” Jpn. J. Appl. Phys. 47(7), 5503–5508 (2008).
[Crossref]

Nano Lett. (1)

C. J. Novotny, C. T. Derose, R. A. Norwood, and P. K. L. Yu, “Linear electrooptic coefficient of InP nanowires,” Nano Lett. 8(4), 1020–1025 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

Y. Enami, C. T. Derose, D. Mathine, C. Loychik, C. Greenlee, R. A. Norwood, T. D. Kim, J. Luo, Y. Tian, A. K.-Y. Jen, and N. Peyghambarian, “Hybrid polymer/sol-gel waveguide modulators with exceptionally large electro-optic coefficients,” Nat. Photonics 1(3), 180–185 (2007).
[Crossref]

Opt. Commun. (1)

J. A. de Toro, M. D. Serrano, A. G. Cabanes, and J. M. Cabrera, “Accurate interferometric measurement of electro-optic coefficients: application to quasi-stoichiometric LiNbO3,” Opt. Commun. 154(1-3), 23–27 (1998).
[Crossref]

Opt. Express (1)

Opt. Quantum Electron. (1)

G. J. Edwards and M. Lawrence, “A temperature-dependent dispersion equation for congruently grown lithium niobate,” Opt. Quantum Electron. 16(4), 373–375 (1984).
[Crossref]

Opt. Rev. (2)

Y. Jeon and H. S. Kang, “Electro-Optic Coefficient Measurements for ZnxCd1-xTe Single Crystals at 1550 nm Wavelength,” Opt. Rev. 14(6), 373–375 (2007).
[Crossref]

K. Takizawa and Y. Yokota; “High Accuracy and High Sensitivity Measurements of the Electrooptic Effects in Undoped and MgO-Doped LiNbO3 Crystals,” Opt. Rev. 13(3), 161–167 (2006).
[Crossref]

Thin Solid Films (1)

Z. Shen, H. Ye, C. L. Mak, K. H. Wong, W. Shen, and B. Guo, “Measurement of transverse electro-optic coefficient of Sr0.6Ba0.4Nb2O6 thin film grown on MgO substrate with different content of potassium ions,” Thin Solid Films 488(1-2), 40–44 (2005).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for measurement of the EO coefficient.

Fig. 2
Fig. 2

(a) Measured interferometer output spectrum, and (b) an oscillation period curve of the interference signals calculated for the ordinary and extraordinary waves from the Fourier transformation of the spectrum in (a), (c) and (d) numerically separated interference spectra of the ordinary and extraordinary waves of a congruent LN crystal, respectively, under no applied voltage and (e) and (f) calculated relative phases vs. wavelength curves of the ordinary and extraordinary waves, respectively, for the cases without and with applied voltage.

Fig. 3
Fig. 3

Measured unclamped EO coefficients vs. wavelength

Fig. 4
Fig. 4

Phase difference change vs. applied voltage for the (a) extraordinary and (b) ordinary waves in the congruent LN crystal

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I ( λ ) = | E 0 ( λ ) | 2 + a 2 | E 0 ( λ ) | 2 + 2 a | E 0 ( λ ) | 2 cos { φ ( λ ) } = I A + I B + 2 I A I B cos { φ ( λ ) } ,
φ ( λ ) = φ f + 2 π λ [ L R . A L S . A n 0 ( λ ) L S ]
φ N L ( λ ) = φ f + 2 π λ [ L R . A L S . A n 0 ( λ ) L S + r 1 2 n 0 3 ( λ ) V t L S ]
r ( λ ) = λ π t n 0 3 ( λ ) ​ ​ ​   V L S { φ N L ( λ ) φ ( λ ) }

Metrics