Abstract

We propose and experimentally demonstrate an all-optical upconverter for the generation of an optical single-sideband (OSSB) signal in radio-over-fiber (RoF) systems. The OSSB signal, which is required for overcoming the fiber chromatic dispersion problem in RoF systems, is generated by using an all-optical SSB upconverter consisting of an optical interleaver and a semiconductor optical amplifier. With this upconversion technique, OSSB radio frequency (RF) signals with an RF frequency ranging from 15 GHz to 42.5 GHz are generated by mixing an optical intermediate frequency (IF) signal (1 GHz) with an optical local oscillator signal and transmitted over a 46 km standard single-mode fiber. The OSSB RF signal generated by this upconversion technique shows negligible dispersion-induced carrier suppression effects, which are usually observed for an optical double-sideband RF signal. The all-optical SSB upconverter provides high conversion efficiency of up to 29 dB and a sufficiently large spurious free dynamic range of 82 dB·Hz2/3 for microcellular personal communication system applications.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
    [CrossRef]
  2. J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
    [CrossRef]
  3. T. Kuri, K. Kitayama, A. Stöhr, and Y. Ogawa, “Fiber-optic millimeter-wave downlink system using 60 GHz-band external modulation,” J. Lightwave Technol. 17(5), 799–806 (1999).
    [CrossRef]
  4. M.-T. Zhou, A. B. Sharma, Z.-H. Shao, and M. Fujise, “Optical single-sideband modulation at 60 GHz using electro-absorption modulators,” in Proc. MWP 2005, 121–124 (2005).
  5. J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
    [CrossRef]
  6. M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005).
    [CrossRef]
  7. Y.-K. Seo, C.-S. Choi, and W.-Y. Choi, “All-optical signal upconversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1448–1450 (2002).
    [CrossRef]
  8. J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimeter-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
    [CrossRef]
  9. D. Marcenac and A. Mecozzi, “Switches and frequency converters based on cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 749–751 (1997).
    [CrossRef]
  10. J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “Spurious-Free Dynamic Range Characteristics of the Photonic Up-Converter Based on a Semiconductor Optical Amplifier,” IEEE Photon. Technol. Lett. 15(11), 1591–1593 (2003).
    [CrossRef]
  11. H.-J. Song, J. S. Lee, and J.-I. Song, “Signal Up-Conversion by Using a Cross-Phase-Modulation in All-Optical SOA-MZI Wavelength Converter,” IEEE Photon. Technol. Lett. 16(2), 593–595 (2004).
    [CrossRef]
  12. J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45(8), 1390–1397 (1997).
    [CrossRef]

2008

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[CrossRef]

2005

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005).
[CrossRef]

2004

H.-J. Song, J. S. Lee, and J.-I. Song, “Signal Up-Conversion by Using a Cross-Phase-Modulation in All-Optical SOA-MZI Wavelength Converter,” IEEE Photon. Technol. Lett. 16(2), 593–595 (2004).
[CrossRef]

2003

J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “Spurious-Free Dynamic Range Characteristics of the Photonic Up-Converter Based on a Semiconductor Optical Amplifier,” IEEE Photon. Technol. Lett. 15(11), 1591–1593 (2003).
[CrossRef]

2002

Y.-K. Seo, C.-S. Choi, and W.-Y. Choi, “All-optical signal upconversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1448–1450 (2002).
[CrossRef]

1999

1997

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimeter-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
[CrossRef]

D. Marcenac and A. Mecozzi, “Switches and frequency converters based on cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 749–751 (1997).
[CrossRef]

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45(8), 1390–1397 (1997).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

Ahmed, Z.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

Attygalle, M.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005).
[CrossRef]

Chang, G.-K.

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[CrossRef]

Choi, C.-S.

Y.-K. Seo, C.-S. Choi, and W.-Y. Choi, “All-optical signal upconversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1448–1450 (2002).
[CrossRef]

Choi, W.-Y.

J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “Spurious-Free Dynamic Range Characteristics of the Photonic Up-Converter Based on a Semiconductor Optical Amplifier,” IEEE Photon. Technol. Lett. 15(11), 1591–1593 (2003).
[CrossRef]

Y.-K. Seo, C.-S. Choi, and W.-Y. Choi, “All-optical signal upconversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1448–1450 (2002).
[CrossRef]

Edvell, G.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005).
[CrossRef]

Fan, J. C.

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45(8), 1390–1397 (1997).
[CrossRef]

Fuster, J. M.

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimeter-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
[CrossRef]

Huang, M.-F.

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[CrossRef]

Jia, Z.

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[CrossRef]

Kazovsky, L. G.

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45(8), 1390–1397 (1997).
[CrossRef]

Kitayama, K.

Kuri, T.

Laming, R. I.

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimeter-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
[CrossRef]

Lau, K. Y.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

Lee, J. S.

H.-J. Song, J. S. Lee, and J.-I. Song, “Signal Up-Conversion by Using a Cross-Phase-Modulation in All-Optical SOA-MZI Wavelength Converter,” IEEE Photon. Technol. Lett. 16(2), 593–595 (2004).
[CrossRef]

Lim, C.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005).
[CrossRef]

Lu, C. L.

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45(8), 1390–1397 (1997).
[CrossRef]

Marcenac, D.

D. Marcenac and A. Mecozzi, “Switches and frequency converters based on cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 749–751 (1997).
[CrossRef]

Marti, J.

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimeter-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
[CrossRef]

Mecozzi, A.

D. Marcenac and A. Mecozzi, “Switches and frequency converters based on cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 749–751 (1997).
[CrossRef]

Nirmalathas, A.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005).
[CrossRef]

Novak, D.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

Ogawa, Y.

Park, J.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

Pendock, G. J.

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005).
[CrossRef]

Seo, J.-H.

J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “Spurious-Free Dynamic Range Characteristics of the Photonic Up-Converter Based on a Semiconductor Optical Amplifier,” IEEE Photon. Technol. Lett. 15(11), 1591–1593 (2003).
[CrossRef]

Seo, Y.-K.

J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “Spurious-Free Dynamic Range Characteristics of the Photonic Up-Converter Based on a Semiconductor Optical Amplifier,” IEEE Photon. Technol. Lett. 15(11), 1591–1593 (2003).
[CrossRef]

Y.-K. Seo, C.-S. Choi, and W.-Y. Choi, “All-optical signal upconversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1448–1450 (2002).
[CrossRef]

Smith, G. H.

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

Song, H.-J.

H.-J. Song, J. S. Lee, and J.-I. Song, “Signal Up-Conversion by Using a Cross-Phase-Modulation in All-Optical SOA-MZI Wavelength Converter,” IEEE Photon. Technol. Lett. 16(2), 593–595 (2004).
[CrossRef]

Song, J.-I.

H.-J. Song, J. S. Lee, and J.-I. Song, “Signal Up-Conversion by Using a Cross-Phase-Modulation in All-Optical SOA-MZI Wavelength Converter,” IEEE Photon. Technol. Lett. 16(2), 593–595 (2004).
[CrossRef]

Sorin, W. V.

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

Stöhr, A.

Wang, T.

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[CrossRef]

Yu, J.

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[CrossRef]

Electron. Lett.

J. Marti, J. M. Fuster, and R. I. Laming, “Experimental reduction of chromatic dispersion effects in lightwave microwave/millimeter-wave transmissions using tapered linearly chirped fibre gratings,” Electron. Lett. 33(13), 1170–1171 (1997).
[CrossRef]

J. Park, W. V. Sorin, and K. Y. Lau, “Elimination of the fibre chromatic dispersion penalty on 1550 nm millimetre-wave optical transmission,” Electron. Lett. 33(6), 512–513 (1997).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Yu, M.-F. Huang, Z. Jia, T. Wang, and G.-K. Chang, “A novel scheme to generate single-sideband millimeter-wave signals by using low-frequency local oscillator signal,” IEEE Photon. Technol. Lett. 20(7), 478–480 (2008).
[CrossRef]

M. Attygalle, C. Lim, G. J. Pendock, A. Nirmalathas, and G. Edvell, “Transmission improvement in fiber wireless links using fiber Bragg gratings,” IEEE Photon. Technol. Lett. 17(1), 190–192 (2005).
[CrossRef]

Y.-K. Seo, C.-S. Choi, and W.-Y. Choi, “All-optical signal upconversion for radio-on-fiber applications using cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 14(10), 1448–1450 (2002).
[CrossRef]

D. Marcenac and A. Mecozzi, “Switches and frequency converters based on cross-gain modulation in semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 9(6), 749–751 (1997).
[CrossRef]

J.-H. Seo, Y.-K. Seo, and W.-Y. Choi, “Spurious-Free Dynamic Range Characteristics of the Photonic Up-Converter Based on a Semiconductor Optical Amplifier,” IEEE Photon. Technol. Lett. 15(11), 1591–1593 (2003).
[CrossRef]

H.-J. Song, J. S. Lee, and J.-I. Song, “Signal Up-Conversion by Using a Cross-Phase-Modulation in All-Optical SOA-MZI Wavelength Converter,” IEEE Photon. Technol. Lett. 16(2), 593–595 (2004).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

J. C. Fan, C. L. Lu, and L. G. Kazovsky, “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links,” IEEE Trans. Microw. Theory Tech. 45(8), 1390–1397 (1997).
[CrossRef]

G. H. Smith, D. Novak, and Z. Ahmed, “Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators,” IEEE Trans. Microw. Theory Tech. 45(8), 1410–1415 (1997).
[CrossRef]

J. Lightwave Technol.

Other

M.-T. Zhou, A. B. Sharma, Z.-H. Shao, and M. Fujise, “Optical single-sideband modulation at 60 GHz using electro-absorption modulators,” in Proc. MWP 2005, 121–124 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principle of all-optical SSB upconversion: (a) an RoF system configured by using the all-optical SSB upconverter; (b) schematic diagram of the all-optical SSB upconverter; (c) optical spectra at each node of the all-optical SSB upconverter

Fig. 2
Fig. 2

Experimental setup for the all-optical SSB upconversion (DFB-LD: distributed feedback laser diode; MZM: Mach-Zehnder modulator; VOA: variable optical attenuator; SOA: semiconductor optical amplifier; EDFA: erbium-doped fiber amplifier; PD: photodiode, ESA: electrical spectrum analyzer)

Fig. 3
Fig. 3

Measured optical and electrical spectra: (a) input of the optical interleaver; (b) output of EDFA2; (c) output of the SOA; (d) input of OBPF2; (e) input of the PD; (f) output of the PD

Fig. 4
Fig. 4

(a) Conversion efficiency as a function of the optical LO power for different EDFA2 currents; (b) CSR as a function of the EDFA2 current

Fig. 5
Fig. 5

Normalized value of the electrical RF signal (USB) power as a function of the frequency of the RF signal

Fig. 6
Fig. 6

Normalized value of the electrical RF signal (USB) power as a function of the IF frequency for different SOA currents

Fig. 7
Fig. 7

(a) Electrical spectra of the OSSB RF signal measured with a resolution bandwidth of 10 kHz at the center frequency of 25 GHz; (b) electrical powers of fundamental and third-order harmonic components of the OSSB RF signal as a function of the electrical IF power

Metrics