Abstract

Optical two-dimensional photon-echo spectroscopy is realized with shaped excitation pulses, allowing coherent control of two-dimensional spectra. This development enables probing of state-selective quantum decoherence and phase/time sensitive couplings between states. The coherently-controlled two-dimensional photon-echo spectrometer with two pulse shapers is based on a passively stabilized four-beam interferometer with diffractive optic, and allows heterodyne detection of signals with a long-term phase stability of ~Λ/100. The two-dimensional spectra of Rhodamine 101 in a methanol solution, measured with unshaped and shaped pulses, exhibit significant differences. We observe in particular, the appearance of fine structure in the spectra obtained using shaped excitation pulses.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, "Two-dimensional electronic spectroscopy," Chem. Phys. Lett. 297,307-313 (1998).
    [CrossRef]
  2. T. Zhang, N. Borca, X. Li, and S. T. Cundiff, "Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization," Opt. Express 11,7432-7441 (2005).
    [CrossRef]
  3. P. F. Trian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300,1553-1555 (2003).
    [CrossRef]
  4. E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, "Facile collection of twodimensional electronic spectra using femtosecond pulse-shaping technology," Opt. Express 1516681-16689 (2007).
    [CrossRef] [PubMed]
  5. M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, "Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes," Chem. Phys. Lett. 386,184-189 (2004).
    [CrossRef]
  6. G. D. Goodno, G. Dadusc, and R. J. D. Miller, "Ultrafast heterodyne detected transient grating spectroscopy using diffractive optics," J. Opt. Soc. Am. B 15,1791-1794 (1998).
    [CrossRef]
  7. T. Brixner, I. V. Stiopkin, and G. R. Fleming, "Tunable two-dimensional femtosecond spectroscopy," Opt. Lett. 28,884-886 (2004).
    [CrossRef]
  8. J. P. Ogilvie, M. L. Cowan, A. M. Nagy, and R. J. D. Miller, "Diffractive optics-based heterodyne detected threepulse photon echo," in Ultrafast Phenomena XIII, R. J. D. Miller, M. M. Murnane, N. F. Scherer, and A. M. Weiner, eds. (Springer-Verlag, 2003), pp. 571-573.
  9. T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis," Nature 434,625-628 (2005).
    [CrossRef] [PubMed]
  10. F. Milota, J. Sperling, A. Nemeth, and H. F. Kauffmann, "Two-dimensional electronic photon echoes of a double band J-aggregate: Quantum oscillatory motion versus exciton relaxation," Chem. Phys. 357,45-53 (2009).
    [CrossRef]
  11. D. Abramavicius and S. Mukamel, "Disentangling multidimensional femtosecond spectra of excitons by pulse shaping with coherent control," J. Chem. Phys. 120,8373-8378 (2004).
    [CrossRef] [PubMed]
  12. S-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide," PNAS 104,14197-14202 (2007).
    [CrossRef] [PubMed]
  13. J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, "Coherently controlled ultrafast four-wave mixing spectroscopy," J. Phys. Chem. A 111,4873-4883 (2007).
    [CrossRef] [PubMed]
  14. K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, "Multidimensional coherent spectroscopy made easy," Chem. Phys. 341,89-94 (2007).
    [CrossRef]
  15. V. I. Prokhorenko, A. M. Nagy, and R. J. D. Miller, "Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study," J. Chem. Phys. 122,184502-184513 (2005).
    [CrossRef] [PubMed]
  16. A. Maznev, T. F. Crimmins, and K. A. Nelson, "How to make femtosecond pulses overlap," Opt. Lett. 23,1378-1380 (1998).
    [CrossRef]
  17. U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, "Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics," Opt. Lett. 33,2851-2853 (2008)
    [CrossRef] [PubMed]
  18. K. J. Kubarych, C. J. Milne, S. Lin, V. Astinov, and R. J. D. Miller, "Diffractive optics-based six-wave mixing: Heterodyne detection of the full |(5) tensor of liquid CS2," J. Chem. Phys. 116,2016-2042 (2002).
    [CrossRef]
  19. E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, "Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation," Opt. Lett. 25,587-589 (2000).
    [CrossRef]
  20. E. H. G. Backus, S. Garret-Roe, and P. Hamm, "Phasing problem of heterodyne-detected two-dimensional infrared spectroscopy," Opt. Lett. 33,2665-2667 (2008).
    [CrossRef] [PubMed]
  21. A. D. Bristow, D. Karaiskaj, X. Dai, and S. T. Cundiff, "All-optical retrieval of the global phase for twodimensional Fourier-transform spectroscopy," Opt. Express 16,18017-18027 (2008).
    [CrossRef]
  22. S. M. G. Faeder and D. M. Jonas, "Two-dimensional electronic correlation and relaxation spectra: theory and model calculations," J. Phys. Chem. B 103,10489-10505 (1999).
    [CrossRef]
  23. J. D. Hybl, A. A. Ferro, and D. M. Jonas, "Two-dimensional Fourier transform electronic spectroscopy," J. Chem. Phys. 115,6606-6622 (2001).
    [CrossRef]
  24. T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, "Phase-stabilized two-dimensional electronic spectroscopy," J. Chem. Phys. 121,4221-4236 (2004).
    [CrossRef] [PubMed]
  25. S. Mukamel, Principles of nonlinear optical spectroscopy (Oxford University Press, New York, 1995).
  26. V. I. Prokhorenko, D. B. Steensgaard, and A. R. Holzwarth, "Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum," Biophys. J. 79,2105-2120 (2000).
    [CrossRef] [PubMed]
  27. M. K. Yetzbacher, N. Belabas, K. A. Kithey, and D. M. Jonas, "Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra," J. Chem. Phys. 126,044511-044539 (2007).
    [CrossRef] [PubMed]

2009

F. Milota, J. Sperling, A. Nemeth, and H. F. Kauffmann, "Two-dimensional electronic photon echoes of a double band J-aggregate: Quantum oscillatory motion versus exciton relaxation," Chem. Phys. 357,45-53 (2009).
[CrossRef]

2008

2007

E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, "Facile collection of twodimensional electronic spectra using femtosecond pulse-shaping technology," Opt. Express 1516681-16689 (2007).
[CrossRef] [PubMed]

S-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide," PNAS 104,14197-14202 (2007).
[CrossRef] [PubMed]

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, "Coherently controlled ultrafast four-wave mixing spectroscopy," J. Phys. Chem. A 111,4873-4883 (2007).
[CrossRef] [PubMed]

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, "Multidimensional coherent spectroscopy made easy," Chem. Phys. 341,89-94 (2007).
[CrossRef]

M. K. Yetzbacher, N. Belabas, K. A. Kithey, and D. M. Jonas, "Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra," J. Chem. Phys. 126,044511-044539 (2007).
[CrossRef] [PubMed]

2005

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis," Nature 434,625-628 (2005).
[CrossRef] [PubMed]

V. I. Prokhorenko, A. M. Nagy, and R. J. D. Miller, "Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study," J. Chem. Phys. 122,184502-184513 (2005).
[CrossRef] [PubMed]

T. Zhang, N. Borca, X. Li, and S. T. Cundiff, "Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization," Opt. Express 11,7432-7441 (2005).
[CrossRef]

2004

D. Abramavicius and S. Mukamel, "Disentangling multidimensional femtosecond spectra of excitons by pulse shaping with coherent control," J. Chem. Phys. 120,8373-8378 (2004).
[CrossRef] [PubMed]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, "Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes," Chem. Phys. Lett. 386,184-189 (2004).
[CrossRef]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, "Tunable two-dimensional femtosecond spectroscopy," Opt. Lett. 28,884-886 (2004).
[CrossRef]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, "Phase-stabilized two-dimensional electronic spectroscopy," J. Chem. Phys. 121,4221-4236 (2004).
[CrossRef] [PubMed]

2003

P. F. Trian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300,1553-1555 (2003).
[CrossRef]

2002

K. J. Kubarych, C. J. Milne, S. Lin, V. Astinov, and R. J. D. Miller, "Diffractive optics-based six-wave mixing: Heterodyne detection of the full |(5) tensor of liquid CS2," J. Chem. Phys. 116,2016-2042 (2002).
[CrossRef]

2001

J. D. Hybl, A. A. Ferro, and D. M. Jonas, "Two-dimensional Fourier transform electronic spectroscopy," J. Chem. Phys. 115,6606-6622 (2001).
[CrossRef]

2000

E. Zeek, R. Bartels, M. M. Murnane, H. C. Kapteyn, S. Backus, and G. Vdovin, "Adaptive pulse compression for transform-limited 15-fs high-energy pulse generation," Opt. Lett. 25,587-589 (2000).
[CrossRef]

V. I. Prokhorenko, D. B. Steensgaard, and A. R. Holzwarth, "Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum," Biophys. J. 79,2105-2120 (2000).
[CrossRef] [PubMed]

1999

S. M. G. Faeder and D. M. Jonas, "Two-dimensional electronic correlation and relaxation spectra: theory and model calculations," J. Phys. Chem. B 103,10489-10505 (1999).
[CrossRef]

1998

Abramavicius, D.

D. Abramavicius and S. Mukamel, "Disentangling multidimensional femtosecond spectra of excitons by pulse shaping with coherent control," J. Chem. Phys. 120,8373-8378 (2004).
[CrossRef] [PubMed]

Albrecht, A. W.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, "Two-dimensional electronic spectroscopy," Chem. Phys. Lett. 297,307-313 (1998).
[CrossRef]

Astinov, V.

K. J. Kubarych, C. J. Milne, S. Lin, V. Astinov, and R. J. D. Miller, "Diffractive optics-based six-wave mixing: Heterodyne detection of the full |(5) tensor of liquid CS2," J. Chem. Phys. 116,2016-2042 (2002).
[CrossRef]

Backus, E. H. G.

Backus, S.

Bartels, R.

Belabas, N.

M. K. Yetzbacher, N. Belabas, K. A. Kithey, and D. M. Jonas, "Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra," J. Chem. Phys. 126,044511-044539 (2007).
[CrossRef] [PubMed]

Blankenship, R. E.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis," Nature 434,625-628 (2005).
[CrossRef] [PubMed]

Borca, N.

T. Zhang, N. Borca, X. Li, and S. T. Cundiff, "Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization," Opt. Express 11,7432-7441 (2005).
[CrossRef]

Bristow, A. D.

Brixner, T.

U. Selig, F. Langhojer, F. Dimler, T. Löhrig, C. Schwarz, B. Gieseking, and T. Brixner, "Inherently phase-stable coherent two-dimensional spectroscopy using only conventional optics," Opt. Lett. 33,2851-2853 (2008)
[CrossRef] [PubMed]

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis," Nature 434,625-628 (2005).
[CrossRef] [PubMed]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, "Phase-stabilized two-dimensional electronic spectroscopy," J. Chem. Phys. 121,4221-4236 (2004).
[CrossRef] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, "Tunable two-dimensional femtosecond spectroscopy," Opt. Lett. 28,884-886 (2004).
[CrossRef]

Cho, M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis," Nature 434,625-628 (2005).
[CrossRef] [PubMed]

Cowan, M. L.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, "Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes," Chem. Phys. Lett. 386,184-189 (2004).
[CrossRef]

Crimmins, T. F.

Cundiff, S. T.

A. D. Bristow, D. Karaiskaj, X. Dai, and S. T. Cundiff, "All-optical retrieval of the global phase for twodimensional Fourier-transform spectroscopy," Opt. Express 16,18017-18027 (2008).
[CrossRef]

T. Zhang, N. Borca, X. Li, and S. T. Cundiff, "Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization," Opt. Express 11,7432-7441 (2005).
[CrossRef]

Dadusc, G.

Dai, X.

Damrauer, N. H.

Dimler, F.

Faeder, S. M. G.

S. M. G. Faeder and D. M. Jonas, "Two-dimensional electronic correlation and relaxation spectra: theory and model calculations," J. Phys. Chem. B 103,10489-10505 (1999).
[CrossRef]

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, "Two-dimensional electronic spectroscopy," Chem. Phys. Lett. 297,307-313 (1998).
[CrossRef]

Ferro, A. A.

J. D. Hybl, A. A. Ferro, and D. M. Jonas, "Two-dimensional Fourier transform electronic spectroscopy," J. Chem. Phys. 115,6606-6622 (2001).
[CrossRef]

Fleming, G. R.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis," Nature 434,625-628 (2005).
[CrossRef] [PubMed]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, "Phase-stabilized two-dimensional electronic spectroscopy," J. Chem. Phys. 121,4221-4236 (2004).
[CrossRef] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, "Tunable two-dimensional femtosecond spectroscopy," Opt. Lett. 28,884-886 (2004).
[CrossRef]

Garret-Roe, S.

Gieseking, B.

Goodno, G. D.

Grumstrup, E. M.

Gundogdu, K.

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, "Multidimensional coherent spectroscopy made easy," Chem. Phys. 341,89-94 (2007).
[CrossRef]

Hamm, P.

Holzwarth, A. R.

V. I. Prokhorenko, D. B. Steensgaard, and A. R. Holzwarth, "Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum," Biophys. J. 79,2105-2120 (2000).
[CrossRef] [PubMed]

Hornung, T.

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, "Coherently controlled ultrafast four-wave mixing spectroscopy," J. Phys. Chem. A 111,4873-4883 (2007).
[CrossRef] [PubMed]

Hybl, J. D.

J. D. Hybl, A. A. Ferro, and D. M. Jonas, "Two-dimensional Fourier transform electronic spectroscopy," J. Chem. Phys. 115,6606-6622 (2001).
[CrossRef]

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, "Two-dimensional electronic spectroscopy," Chem. Phys. Lett. 297,307-313 (1998).
[CrossRef]

Jonas, D. M.

M. K. Yetzbacher, N. Belabas, K. A. Kithey, and D. M. Jonas, "Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra," J. Chem. Phys. 126,044511-044539 (2007).
[CrossRef] [PubMed]

J. D. Hybl, A. A. Ferro, and D. M. Jonas, "Two-dimensional Fourier transform electronic spectroscopy," J. Chem. Phys. 115,6606-6622 (2001).
[CrossRef]

S. M. G. Faeder and D. M. Jonas, "Two-dimensional electronic correlation and relaxation spectra: theory and model calculations," J. Phys. Chem. B 103,10489-10505 (1999).
[CrossRef]

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, "Two-dimensional electronic spectroscopy," Chem. Phys. Lett. 297,307-313 (1998).
[CrossRef]

Kapteyn, H. C.

Karaiskaj, D.

Kauffmann, H. F.

F. Milota, J. Sperling, A. Nemeth, and H. F. Kauffmann, "Two-dimensional electronic photon echoes of a double band J-aggregate: Quantum oscillatory motion versus exciton relaxation," Chem. Phys. 357,45-53 (2009).
[CrossRef]

Keusters, D.

P. F. Trian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300,1553-1555 (2003).
[CrossRef]

Kithey, K. A.

M. K. Yetzbacher, N. Belabas, K. A. Kithey, and D. M. Jonas, "Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra," J. Chem. Phys. 126,044511-044539 (2007).
[CrossRef] [PubMed]

Kubarych, K. J.

K. J. Kubarych, C. J. Milne, S. Lin, V. Astinov, and R. J. D. Miller, "Diffractive optics-based six-wave mixing: Heterodyne detection of the full |(5) tensor of liquid CS2," J. Chem. Phys. 116,2016-2042 (2002).
[CrossRef]

Langhojer, F.

Li, X.

T. Zhang, N. Borca, X. Li, and S. T. Cundiff, "Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization," Opt. Express 11,7432-7441 (2005).
[CrossRef]

Lin, S.

K. J. Kubarych, C. J. Milne, S. Lin, V. Astinov, and R. J. D. Miller, "Diffractive optics-based six-wave mixing: Heterodyne detection of the full |(5) tensor of liquid CS2," J. Chem. Phys. 116,2016-2042 (2002).
[CrossRef]

Ling, Y. L.

S-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide," PNAS 104,14197-14202 (2007).
[CrossRef] [PubMed]

Löhrig, T.

Mancal, T.

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, "Phase-stabilized two-dimensional electronic spectroscopy," J. Chem. Phys. 121,4221-4236 (2004).
[CrossRef] [PubMed]

Maznev, A.

Miller, R. J. D.

V. I. Prokhorenko, A. M. Nagy, and R. J. D. Miller, "Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study," J. Chem. Phys. 122,184502-184513 (2005).
[CrossRef] [PubMed]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, "Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes," Chem. Phys. Lett. 386,184-189 (2004).
[CrossRef]

K. J. Kubarych, C. J. Milne, S. Lin, V. Astinov, and R. J. D. Miller, "Diffractive optics-based six-wave mixing: Heterodyne detection of the full |(5) tensor of liquid CS2," J. Chem. Phys. 116,2016-2042 (2002).
[CrossRef]

G. D. Goodno, G. Dadusc, and R. J. D. Miller, "Ultrafast heterodyne detected transient grating spectroscopy using diffractive optics," J. Opt. Soc. Am. B 15,1791-1794 (1998).
[CrossRef]

Milne, C. J.

K. J. Kubarych, C. J. Milne, S. Lin, V. Astinov, and R. J. D. Miller, "Diffractive optics-based six-wave mixing: Heterodyne detection of the full |(5) tensor of liquid CS2," J. Chem. Phys. 116,2016-2042 (2002).
[CrossRef]

Milota, F.

F. Milota, J. Sperling, A. Nemeth, and H. F. Kauffmann, "Two-dimensional electronic photon echoes of a double band J-aggregate: Quantum oscillatory motion versus exciton relaxation," Chem. Phys. 357,45-53 (2009).
[CrossRef]

Montgomery, M. A.

Mukamel, S.

D. Abramavicius and S. Mukamel, "Disentangling multidimensional femtosecond spectra of excitons by pulse shaping with coherent control," J. Chem. Phys. 120,8373-8378 (2004).
[CrossRef] [PubMed]

Murnane, M. M.

Nagy, A. M.

V. I. Prokhorenko, A. M. Nagy, and R. J. D. Miller, "Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study," J. Chem. Phys. 122,184502-184513 (2005).
[CrossRef] [PubMed]

Nelson, K. A.

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, "Multidimensional coherent spectroscopy made easy," Chem. Phys. 341,89-94 (2007).
[CrossRef]

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, "Coherently controlled ultrafast four-wave mixing spectroscopy," J. Phys. Chem. A 111,4873-4883 (2007).
[CrossRef] [PubMed]

A. Maznev, T. F. Crimmins, and K. A. Nelson, "How to make femtosecond pulses overlap," Opt. Lett. 23,1378-1380 (1998).
[CrossRef]

Nemeth, A.

F. Milota, J. Sperling, A. Nemeth, and H. F. Kauffmann, "Two-dimensional electronic photon echoes of a double band J-aggregate: Quantum oscillatory motion versus exciton relaxation," Chem. Phys. 357,45-53 (2009).
[CrossRef]

Ogilvie, J. P.

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, "Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes," Chem. Phys. Lett. 386,184-189 (2004).
[CrossRef]

Prokhorenko, V. I.

V. I. Prokhorenko, A. M. Nagy, and R. J. D. Miller, "Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study," J. Chem. Phys. 122,184502-184513 (2005).
[CrossRef] [PubMed]

V. I. Prokhorenko, D. B. Steensgaard, and A. R. Holzwarth, "Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum," Biophys. J. 79,2105-2120 (2000).
[CrossRef] [PubMed]

Schwarz, C.

Selig, U.

Shim, S.-H.

Shim, S-H.

S-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide," PNAS 104,14197-14202 (2007).
[CrossRef] [PubMed]

Sperling, J.

F. Milota, J. Sperling, A. Nemeth, and H. F. Kauffmann, "Two-dimensional electronic photon echoes of a double band J-aggregate: Quantum oscillatory motion versus exciton relaxation," Chem. Phys. 357,45-53 (2009).
[CrossRef]

Steensgaard, D. B.

V. I. Prokhorenko, D. B. Steensgaard, and A. R. Holzwarth, "Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum," Biophys. J. 79,2105-2120 (2000).
[CrossRef] [PubMed]

Stenger, J.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis," Nature 434,625-628 (2005).
[CrossRef] [PubMed]

Stiopkin, I. V.

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, "Phase-stabilized two-dimensional electronic spectroscopy," J. Chem. Phys. 121,4221-4236 (2004).
[CrossRef] [PubMed]

T. Brixner, I. V. Stiopkin, and G. R. Fleming, "Tunable two-dimensional femtosecond spectroscopy," Opt. Lett. 28,884-886 (2004).
[CrossRef]

Stone, K. W.

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, "Multidimensional coherent spectroscopy made easy," Chem. Phys. 341,89-94 (2007).
[CrossRef]

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, "Coherently controlled ultrafast four-wave mixing spectroscopy," J. Phys. Chem. A 111,4873-4883 (2007).
[CrossRef] [PubMed]

Strasfeld, D. B.

S-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide," PNAS 104,14197-14202 (2007).
[CrossRef] [PubMed]

Suzaki, Y.

P. F. Trian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300,1553-1555 (2003).
[CrossRef]

Trian, P. F.

P. F. Trian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300,1553-1555 (2003).
[CrossRef]

Turner, D. B.

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, "Multidimensional coherent spectroscopy made easy," Chem. Phys. 341,89-94 (2007).
[CrossRef]

Vaswani, H. M.

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis," Nature 434,625-628 (2005).
[CrossRef] [PubMed]

Vaughan, J. C.

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, "Coherently controlled ultrafast four-wave mixing spectroscopy," J. Phys. Chem. A 111,4873-4883 (2007).
[CrossRef] [PubMed]

Vdovin, G.

Warren, W. S.

P. F. Trian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300,1553-1555 (2003).
[CrossRef]

Yetzbacher, M. K.

M. K. Yetzbacher, N. Belabas, K. A. Kithey, and D. M. Jonas, "Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra," J. Chem. Phys. 126,044511-044539 (2007).
[CrossRef] [PubMed]

Zanni, M. T.

S-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide," PNAS 104,14197-14202 (2007).
[CrossRef] [PubMed]

E. M. Grumstrup, S.-H. Shim, M. A. Montgomery, N. H. Damrauer, and M. T. Zanni, "Facile collection of twodimensional electronic spectra using femtosecond pulse-shaping technology," Opt. Express 1516681-16689 (2007).
[CrossRef] [PubMed]

Zeek, E.

Zhang, T.

T. Zhang, N. Borca, X. Li, and S. T. Cundiff, "Optical two-dimensional Fourier transform spectroscopy with active interferometric stabilization," Opt. Express 11,7432-7441 (2005).
[CrossRef]

Biophys. J.

V. I. Prokhorenko, D. B. Steensgaard, and A. R. Holzwarth, "Exciton dynamics in the chlorosomal antennae of the green bacteria Chloroflexus aurantiacus and Chlorobium tepidum," Biophys. J. 79,2105-2120 (2000).
[CrossRef] [PubMed]

Chem. Phys.

F. Milota, J. Sperling, A. Nemeth, and H. F. Kauffmann, "Two-dimensional electronic photon echoes of a double band J-aggregate: Quantum oscillatory motion versus exciton relaxation," Chem. Phys. 357,45-53 (2009).
[CrossRef]

K. Gundogdu, K. W. Stone, D. B. Turner, and K. A. Nelson, "Multidimensional coherent spectroscopy made easy," Chem. Phys. 341,89-94 (2007).
[CrossRef]

Chem. Phys. Lett.

J. D. Hybl, A. W. Albrecht, S. M. G. Faeder, and D. M. Jonas, "Two-dimensional electronic spectroscopy," Chem. Phys. Lett. 297,307-313 (1998).
[CrossRef]

M. L. Cowan, J. P. Ogilvie, and R. J. D. Miller, "Two-dimensional spectroscopy using diffractive optics based phased-locked photon echoes," Chem. Phys. Lett. 386,184-189 (2004).
[CrossRef]

J. Chem. Phys.

K. J. Kubarych, C. J. Milne, S. Lin, V. Astinov, and R. J. D. Miller, "Diffractive optics-based six-wave mixing: Heterodyne detection of the full |(5) tensor of liquid CS2," J. Chem. Phys. 116,2016-2042 (2002).
[CrossRef]

J. D. Hybl, A. A. Ferro, and D. M. Jonas, "Two-dimensional Fourier transform electronic spectroscopy," J. Chem. Phys. 115,6606-6622 (2001).
[CrossRef]

T. Brixner, T. Mančal, I. V. Stiopkin, and G. R. Fleming, "Phase-stabilized two-dimensional electronic spectroscopy," J. Chem. Phys. 121,4221-4236 (2004).
[CrossRef] [PubMed]

M. K. Yetzbacher, N. Belabas, K. A. Kithey, and D. M. Jonas, "Propagation, beam geometry, and detection distortions of peak shapes in two-dimensional Fourier transform spectra," J. Chem. Phys. 126,044511-044539 (2007).
[CrossRef] [PubMed]

V. I. Prokhorenko, A. M. Nagy, and R. J. D. Miller, "Coherent control of the population transfer in complex solvated molecules at weak excitation. An experimental study," J. Chem. Phys. 122,184502-184513 (2005).
[CrossRef] [PubMed]

D. Abramavicius and S. Mukamel, "Disentangling multidimensional femtosecond spectra of excitons by pulse shaping with coherent control," J. Chem. Phys. 120,8373-8378 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

J. Phys. Chem. A

J. C. Vaughan, T. Hornung, K. W. Stone, and K. A. Nelson, "Coherently controlled ultrafast four-wave mixing spectroscopy," J. Phys. Chem. A 111,4873-4883 (2007).
[CrossRef] [PubMed]

J. Phys. Chem. B

S. M. G. Faeder and D. M. Jonas, "Two-dimensional electronic correlation and relaxation spectra: theory and model calculations," J. Phys. Chem. B 103,10489-10505 (1999).
[CrossRef]

Nature

T. Brixner, J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, and G. R. Fleming, "Two-dimensional spectroscopy of electronic couplings in photosynthesis," Nature 434,625-628 (2005).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

PNAS

S-H. Shim, D. B. Strasfeld, Y. L. Ling, and M. T. Zanni, "Automated 2D IR spectroscopy using a mid-IR pulse shaper and application of this technology to the human islet amyloid polypeptide," PNAS 104,14197-14202 (2007).
[CrossRef] [PubMed]

Science

P. F. Trian, D. Keusters, Y. Suzaki, and W. S. Warren, "Femtosecond phase-coherent two-dimensional spectroscopy," Science 300,1553-1555 (2003).
[CrossRef]

Other

J. P. Ogilvie, M. L. Cowan, A. M. Nagy, and R. J. D. Miller, "Diffractive optics-based heterodyne detected threepulse photon echo," in Ultrafast Phenomena XIII, R. J. D. Miller, M. M. Murnane, N. F. Scherer, and A. M. Weiner, eds. (Springer-Verlag, 2003), pp. 571-573.

S. Mukamel, Principles of nonlinear optical spectroscopy (Oxford University Press, New York, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Schematic of the PE-interferometer with uncoupled translation stages for performing heterodyne-detected measurements. RBS - removable beam splitter (to switch from the “mono-beam” to the “dual-beam” configuration); M1-M3 - 100% mirrors; M4 - 100% roof mirror; DL1, DL2 - τ - and T- translation stages, respectively; DO - diffractive beam splitter; L1-L3 - collimating/focusing optics. The directions of all 4 beams are indicated by their wave vectors.

Fig. 2.
Fig. 2.

Timing diagrams showing the pulses’ temporal arrangement for the PE-interferometers in the previous configuration [5] (A), and present interferometers for both presented schematic solutions “variant 1” (B) and “variant 2” (C). The excitation pulses (1,2) and reading pulse (3) are sequentially applied to a medium from which an echo pulse is generated and temporally overlapped with the local oscillator pulse (LO), which is additionally shifted by a small delay time of ≈400 fs.

Fig. 3.
Fig. 3.

Optical layout of the coherently-controlled 2D-PE setup with the variant 2 four-beam interferometer. Here NOPA - non-collinear optical parametric amplifier producing broadband (100 nm width) pulses; BS - dielectric 50/50 beam splitter (the first beam splitter in the interferometer); AOS - acousto-optical pulse shaper for coherent control of the PE; DMS - deformable mirror based shaper for compressing the NOPA light pulses to nearly transform-limited pulses with a duration of 10 fs at 565 nm; chirp compensators - for removing the intrinsic linear chirp in both the shaper’s channels; FROG - the χ(3) frequency-resolved optical gating apparatus for the measurement and characterization of pulses; DL1, DL2 - translation stages for performing of τ - and T-scans, respectively; RR1–RR4 - hollow retroreflectors; RBS - removable 50/50 dielectric beam splitter; CP, RCP - the permanent and removable compensating glass plates, respectively; DO - diffractive beam splitter (the second beam splitter in the interferometer); PM - off-axis parabolic mirrors; M - aluminum mirrors; SC - the sample flow cell.

Fig. 4.
Fig. 4.

Pump-probe scans of the DO beam splitter in cases of spatially-overlapped pulses (A), and after displacement of the DO from the focal position of focusing mirror (f=152.4 mm) by 0.8 mm (B).

Fig. 5.
Fig. 5.

The FROG traces of the pulse, incoming into port #2 of the interferometer (A), after passing through the interferometer and linear chirp correction (B), and following the correction of high-order phase distortions in the interferometer (C). The pulse durations (retrieved using a commercial program) are 10, 22, and 13 fs, respectively.

Fig. 6.
Fig. 6.

(A) Phase stability of the 2D-PE setup monitored within 20 min for the mono-beam (the DM-shaper arm) and the dual-beam (the DM- and AOS-shaper arms) configurations. The STD of the phase fluctuations is Λ/120 and Λ/95, respectively. (B) Dispersion of the phase fluctuations across the spectrum. The stability is maximal at ~560 nm where the measuring SNR is also maximal.

Fig. 7.
Fig. 7.

Illustration of the phasing of the local oscillator pulse using the pump-probe and the PE spectra, recorded at zero delays. The residuals plotted in the bottom panel show a good coincidence of the spectra (both panels have identical scaling of Y-axes).

Fig. 8.
Fig. 8.

Comparison of the homodyne-detected PE from Rhodamine 101 in methanol measured at T=0 with short (~10 fs FWHM) excitation pulse (A) and shaped excitation pulses (B). Note difference in the τ scan ranges. (C,D) Amplitude and phase masks applied to the AOS for generating shaped pulses, respectively.

Fig. 9.
Fig. 9.

2D-PE spectrum of Rhodamine 101 recorded at T=0 using a 10-fs excitation pulses. (A) - real part, (B) - imaginary part, and (C) - the power spectrum.

Fig. 10.
Fig. 10.

2D-PE spectrum of Rhodamine 101 recorded at T=0 using shaped excitation pulses and a 10-fs reading pulse. (A) - real part, (B) - imaginary part, and (C) - the power spectrum.

Fig. 11.
Fig. 11.

The 2D-PE power spectrum of Rhodamine 101 measured with excitation pulses having only amplitude shaped profiles and a constant phase across their spectra, and a 10-fs reading pulse (left). The cross-sections at ωτ =17850 cm −1 (568.8 nm) from the 2D-spectra obtained with the amplitude only and with the both amplitude and phase shaping are shown for comparison (right).

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

Δϕs=ϕ2+ϕ3ϕ1ϕLO+ϕPE(ϕ2ϕ1)+(ϕ3ϕLO)+ϕPE,
δ(Δϕs)=(δϕ2δϕ1)+(δϕ3δϕLO).
δϕ1=δϕbeam1+δϕM1+δϕL1+δϕDO+δϕL2+δϕM4+δϕL3 ,
δ ϕ2 = δϕbeam1+δϕM1+δϕL1+δϕDO+δϕL2+δϕDL1+δ ϕL3 ,
δ ϕ3 = δϕbeam2+δϕDL1+δϕM2+δϕDL2+δϕM3+δϕL1+δ ϕDO +δϕL2+δϕM4+δ ϕL3 ,
δ ϕLO = δϕbeam2+δϕDL1+δϕM2+δϕDL2+δϕM3+δϕL1+δ ϕDO +δϕL2+δϕDL1+δ ϕL3
δ(Δϕs)=(δϕDL1δϕM4)+(δϕM4δϕDL1)0 .
S(ω)=E˜ (ω) E˜* (ω) ,
E(t)=PE(t)+LO(tΔTτδt)
S(ω)=PE(ω)2+LO(ω)2+PE(ω)LO*(ω)eiω(ΔT+τ)+iδϕ+c.c.
ΔS(ω)=A˜(ω)eiω(ΔT+τ)+A˜*(ω)eiω(ΔT+τ)+SPE(ω) ,
ΔS˜(t)=A(tΔTτ)+A*(t+ΔT+τ)+S˜PE(t) .
ΔS+(ω)=A˜(ω)eiω(ΔT+τ),ΔS(ω)=A˜* (ω) eiω(ΔT+τ) .
ϕs=Im{ln[A˜(ω)]}ϕ0+δϕ ,
ΔSpp(ω)=A˜pp(ω)+A˜pp*(ω)+Spp(ω) ,
ΔSpe(ω)=A˜pe(ω)eiωΔT+A˜pe*(ω)eiωΔT+Spe(ω),
Spe(ω)=Δ S+ (ω) Δ S (ω) SLO (ω) .
ΔSpe(ω)=A˜pe(ω)eiωδt+A˜pe*(ω)eiωδt+Spe(ω) .
A˜pe(ω)eiωδt+A˜pe*(ω)eiωδt+Spe(ω)Δ Spp (ω) .
ΔS+(ωt,τ)=PE (ωt,τ) LO* (ωt,τ) eiωtτ .
PE(ωt,τ)=ΔS+(ωt,τ)ΔS(ωt,τ)SpLO(ωt,τ) ,
ϕpe(ωt,τ)=Im{ln[ΔS+(ωt,τ)]}ωtτ .

Metrics