Abstract

A new microlens fabrication method using an excimer laser is described in this paper. This method is based on the light vignetting effect. An excimer laser beam was propagated through two groups of fly’s-eye lens arrays and separated by the groups, after which divergent beams were formed. When the beams were sectioned by a mask and passed through a circular diaphragm, a vignetting effect was produced relative to an excimer laser mask projection image lens. Then the irradiating intensity at the processing plane varied from the beam center to its margin. This intensity difference in the transverse distribution would result in microlens curvature forming. This diaphragm method has the extinct advantage of short production time, few steps and easy setup construction.

©2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Measurement of the frequency response of a diaphragm-based pressure sensor by use of a pulsed excimer laser

Fabin Shen, Juncheng Xu, and Anbo Wang
Opt. Lett. 30(15) 1935-1937 (2005)

Fabrication of a polymeric vertical microlens with the dip method

Chih-Chao Yang, Yun-Hsun Huang, Te-Chin Peng, Meng-Chyi Wu, Chong-Long Ho, Chao-Chi Hong, I-Ming Liu, and Yao-Tsong Tsai
Appl. Opt. 45(32) 8273-8277 (2006)

Laser-fabricated glass microlens arrays

M. Fritze, M. B. Stern, and P. W. Wyatt
Opt. Lett. 23(2) 141-143 (1998)

References

  • View by:
  • |
  • |
  • |

  1. S. Moon, S. Kang, and J. U. Bu, “Fabrication of polymeric microlens hemispherical shape using micromolding,” Opt. Eng. 41, 2267–2270 (2002).
    [Crossref]
  2. B. K. Lee, D .S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10, 531–535 (2004).
    [Crossref]
  3. Q. Xu, J. Ye, G. Y. Zhou, X. Y. Hou, G. G. Yang, Z. K. Bao, and Z. R. Yu, “Fabrication of refractive microlens array by melting photoresist,” Acta Opt. Sin. 16, 1326–1331 (1996). (in Chinese)
  4. Q. Xu, L. M. Yang, X. W. Hu, and G. G. Yang, “Step heat-forming photoresist method for expanding the N.A. range of refractive microlens,” Acta Opt. Sin. 18, 1128–1133 (1998). (in Chinese)
  5. X. Y. Zhang, X. J. Yi, X. G. Zhao, Z. H. Mai, M. He, and L. Q. Liu, “Fabrication of linear fused quartz microlens array using photolithography and Ar ion beam etching,” Chin. J. Quantum. Electron. 15, 66–73 (1998). (in Chinese)
  6. J. Yao, J. Q. Su, F. H. Gao, F. Gao, Y. K. Guo, C. L. Du, H. J. Zeng, and C. K. Qiu, “Refraction microlens array made of bichromate gelatine by enzyme solution with coding gray tone mask,” Chin. J. Lasers A 28, 633–636 (2001). (in Chinese)
  7. S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Replication microlens fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13, 177–182 (1998).
    [Crossref]
  8. G. R. Song, H. Z. Yao, and Z. G. Lan, “Design and practice of film microlenses fabricated by laser chemical vapor deposition,” Optoelectron. Technol. 16, 201–208 (1996). (in Chinese)
  9. F. Quentela, J. Fieretb, A. S. Holmesc, and S. Paineaua, “Multilevel diffractive optical element manufacture by excimer laser ablation and halftone masks,” Proc. SPIE 4274, 420–31 (2001).
    [Crossref]
  10. N. H. Rizvi, “Production of novel 3D microstructures using excimer laser mask projection techniques,” Proc. SPIE 3680, 546–52 (1999).
    [Crossref]
  11. A. S. Holmes, J. E. Pedder, and K. L. Boehlen, “Advanced Laser Micromachining Processes for MEMS and Optical Applications,” Proc. SPIE 6261, 62611E-1~9 (2006).
  12. L. Herbst and R. Paetzel, “High-power excimer laser micromachining,” Proc. SPIE 6106, 610606-1~7 (2006).
  13. C. J. Hayden, “Three-dimensional excimer laser micromachining using greyscale masks,” J. Micromech. Microeng. 13, 599–603 (2003).
    [Crossref]
  14. Z. J. Wang, X. P. Chen, H. M. Lu, and P. S. Gu, Optics Technical Manual (China Machine Press, Beijing, China,1987), Chap.2. (in Chinese)
  15. ZEMAX EE, Optical Design Program User’s Guide, January 6, 2003.
  16. X. L. Zhu, S. B. Liu, T. Chen, Y. J. Jiang, and T. C. Zuo, “Analysis of X-ray photoelectron spectroscopy of polymethyl methacrylate etched by a KrF excimer laser,” Chin. Phys. Lett. 22, 1526–9 (2005).
    [Crossref]

2006 (2)

A. S. Holmes, J. E. Pedder, and K. L. Boehlen, “Advanced Laser Micromachining Processes for MEMS and Optical Applications,” Proc. SPIE 6261, 62611E-1~9 (2006).

L. Herbst and R. Paetzel, “High-power excimer laser micromachining,” Proc. SPIE 6106, 610606-1~7 (2006).

2005 (1)

X. L. Zhu, S. B. Liu, T. Chen, Y. J. Jiang, and T. C. Zuo, “Analysis of X-ray photoelectron spectroscopy of polymethyl methacrylate etched by a KrF excimer laser,” Chin. Phys. Lett. 22, 1526–9 (2005).
[Crossref]

2004 (1)

B. K. Lee, D .S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10, 531–535 (2004).
[Crossref]

2003 (1)

C. J. Hayden, “Three-dimensional excimer laser micromachining using greyscale masks,” J. Micromech. Microeng. 13, 599–603 (2003).
[Crossref]

2002 (1)

S. Moon, S. Kang, and J. U. Bu, “Fabrication of polymeric microlens hemispherical shape using micromolding,” Opt. Eng. 41, 2267–2270 (2002).
[Crossref]

2001 (2)

J. Yao, J. Q. Su, F. H. Gao, F. Gao, Y. K. Guo, C. L. Du, H. J. Zeng, and C. K. Qiu, “Refraction microlens array made of bichromate gelatine by enzyme solution with coding gray tone mask,” Chin. J. Lasers A 28, 633–636 (2001). (in Chinese)

F. Quentela, J. Fieretb, A. S. Holmesc, and S. Paineaua, “Multilevel diffractive optical element manufacture by excimer laser ablation and halftone masks,” Proc. SPIE 4274, 420–31 (2001).
[Crossref]

1999 (1)

N. H. Rizvi, “Production of novel 3D microstructures using excimer laser mask projection techniques,” Proc. SPIE 3680, 546–52 (1999).
[Crossref]

1998 (3)

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Replication microlens fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13, 177–182 (1998).
[Crossref]

Q. Xu, L. M. Yang, X. W. Hu, and G. G. Yang, “Step heat-forming photoresist method for expanding the N.A. range of refractive microlens,” Acta Opt. Sin. 18, 1128–1133 (1998). (in Chinese)

X. Y. Zhang, X. J. Yi, X. G. Zhao, Z. H. Mai, M. He, and L. Q. Liu, “Fabrication of linear fused quartz microlens array using photolithography and Ar ion beam etching,” Chin. J. Quantum. Electron. 15, 66–73 (1998). (in Chinese)

1996 (2)

Q. Xu, J. Ye, G. Y. Zhou, X. Y. Hou, G. G. Yang, Z. K. Bao, and Z. R. Yu, “Fabrication of refractive microlens array by melting photoresist,” Acta Opt. Sin. 16, 1326–1331 (1996). (in Chinese)

G. R. Song, H. Z. Yao, and Z. G. Lan, “Design and practice of film microlenses fabricated by laser chemical vapor deposition,” Optoelectron. Technol. 16, 201–208 (1996). (in Chinese)

Aegerter, M. A.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Replication microlens fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13, 177–182 (1998).
[Crossref]

Bao, Z. K.

Q. Xu, J. Ye, G. Y. Zhou, X. Y. Hou, G. G. Yang, Z. K. Bao, and Z. R. Yu, “Fabrication of refractive microlens array by melting photoresist,” Acta Opt. Sin. 16, 1326–1331 (1996). (in Chinese)

Biehl, S.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Replication microlens fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13, 177–182 (1998).
[Crossref]

Boehlen, K. L.

A. S. Holmes, J. E. Pedder, and K. L. Boehlen, “Advanced Laser Micromachining Processes for MEMS and Optical Applications,” Proc. SPIE 6261, 62611E-1~9 (2006).

Bu, J. U.

S. Moon, S. Kang, and J. U. Bu, “Fabrication of polymeric microlens hemispherical shape using micromolding,” Opt. Eng. 41, 2267–2270 (2002).
[Crossref]

Chen, T.

X. L. Zhu, S. B. Liu, T. Chen, Y. J. Jiang, and T. C. Zuo, “Analysis of X-ray photoelectron spectroscopy of polymethyl methacrylate etched by a KrF excimer laser,” Chin. Phys. Lett. 22, 1526–9 (2005).
[Crossref]

Chen, X. P.

Z. J. Wang, X. P. Chen, H. M. Lu, and P. S. Gu, Optics Technical Manual (China Machine Press, Beijing, China,1987), Chap.2. (in Chinese)

Danzebrink, R.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Replication microlens fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13, 177–182 (1998).
[Crossref]

Du, C. L.

J. Yao, J. Q. Su, F. H. Gao, F. Gao, Y. K. Guo, C. L. Du, H. J. Zeng, and C. K. Qiu, “Refraction microlens array made of bichromate gelatine by enzyme solution with coding gray tone mask,” Chin. J. Lasers A 28, 633–636 (2001). (in Chinese)

Fieretb, J.

F. Quentela, J. Fieretb, A. S. Holmesc, and S. Paineaua, “Multilevel diffractive optical element manufacture by excimer laser ablation and halftone masks,” Proc. SPIE 4274, 420–31 (2001).
[Crossref]

Gao, F.

J. Yao, J. Q. Su, F. H. Gao, F. Gao, Y. K. Guo, C. L. Du, H. J. Zeng, and C. K. Qiu, “Refraction microlens array made of bichromate gelatine by enzyme solution with coding gray tone mask,” Chin. J. Lasers A 28, 633–636 (2001). (in Chinese)

Gao, F. H.

J. Yao, J. Q. Su, F. H. Gao, F. Gao, Y. K. Guo, C. L. Du, H. J. Zeng, and C. K. Qiu, “Refraction microlens array made of bichromate gelatine by enzyme solution with coding gray tone mask,” Chin. J. Lasers A 28, 633–636 (2001). (in Chinese)

Gu, P. S.

Z. J. Wang, X. P. Chen, H. M. Lu, and P. S. Gu, Optics Technical Manual (China Machine Press, Beijing, China,1987), Chap.2. (in Chinese)

Guo, Y. K.

J. Yao, J. Q. Su, F. H. Gao, F. Gao, Y. K. Guo, C. L. Du, H. J. Zeng, and C. K. Qiu, “Refraction microlens array made of bichromate gelatine by enzyme solution with coding gray tone mask,” Chin. J. Lasers A 28, 633–636 (2001). (in Chinese)

Hayden, C. J.

C. J. Hayden, “Three-dimensional excimer laser micromachining using greyscale masks,” J. Micromech. Microeng. 13, 599–603 (2003).
[Crossref]

He, M.

X. Y. Zhang, X. J. Yi, X. G. Zhao, Z. H. Mai, M. He, and L. Q. Liu, “Fabrication of linear fused quartz microlens array using photolithography and Ar ion beam etching,” Chin. J. Quantum. Electron. 15, 66–73 (1998). (in Chinese)

Herbst, L.

L. Herbst and R. Paetzel, “High-power excimer laser micromachining,” Proc. SPIE 6106, 610606-1~7 (2006).

Holmes, A. S.

A. S. Holmes, J. E. Pedder, and K. L. Boehlen, “Advanced Laser Micromachining Processes for MEMS and Optical Applications,” Proc. SPIE 6261, 62611E-1~9 (2006).

Holmesc, A. S.

F. Quentela, J. Fieretb, A. S. Holmesc, and S. Paineaua, “Multilevel diffractive optical element manufacture by excimer laser ablation and halftone masks,” Proc. SPIE 4274, 420–31 (2001).
[Crossref]

Hou, X. Y.

Q. Xu, J. Ye, G. Y. Zhou, X. Y. Hou, G. G. Yang, Z. K. Bao, and Z. R. Yu, “Fabrication of refractive microlens array by melting photoresist,” Acta Opt. Sin. 16, 1326–1331 (1996). (in Chinese)

Hu, X. W.

Q. Xu, L. M. Yang, X. W. Hu, and G. G. Yang, “Step heat-forming photoresist method for expanding the N.A. range of refractive microlens,” Acta Opt. Sin. 18, 1128–1133 (1998). (in Chinese)

Jiang, Y. J.

X. L. Zhu, S. B. Liu, T. Chen, Y. J. Jiang, and T. C. Zuo, “Analysis of X-ray photoelectron spectroscopy of polymethyl methacrylate etched by a KrF excimer laser,” Chin. Phys. Lett. 22, 1526–9 (2005).
[Crossref]

Kang, S.

S. Moon, S. Kang, and J. U. Bu, “Fabrication of polymeric microlens hemispherical shape using micromolding,” Opt. Eng. 41, 2267–2270 (2002).
[Crossref]

Kim, D .S.

B. K. Lee, D .S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10, 531–535 (2004).
[Crossref]

Kwon, T. H.

B. K. Lee, D .S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10, 531–535 (2004).
[Crossref]

Lan, Z. G.

G. R. Song, H. Z. Yao, and Z. G. Lan, “Design and practice of film microlenses fabricated by laser chemical vapor deposition,” Optoelectron. Technol. 16, 201–208 (1996). (in Chinese)

Lee, B. K.

B. K. Lee, D .S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10, 531–535 (2004).
[Crossref]

Liu, L. Q.

X. Y. Zhang, X. J. Yi, X. G. Zhao, Z. H. Mai, M. He, and L. Q. Liu, “Fabrication of linear fused quartz microlens array using photolithography and Ar ion beam etching,” Chin. J. Quantum. Electron. 15, 66–73 (1998). (in Chinese)

Liu, S. B.

X. L. Zhu, S. B. Liu, T. Chen, Y. J. Jiang, and T. C. Zuo, “Analysis of X-ray photoelectron spectroscopy of polymethyl methacrylate etched by a KrF excimer laser,” Chin. Phys. Lett. 22, 1526–9 (2005).
[Crossref]

Lu, H. M.

Z. J. Wang, X. P. Chen, H. M. Lu, and P. S. Gu, Optics Technical Manual (China Machine Press, Beijing, China,1987), Chap.2. (in Chinese)

Mai, Z. H.

X. Y. Zhang, X. J. Yi, X. G. Zhao, Z. H. Mai, M. He, and L. Q. Liu, “Fabrication of linear fused quartz microlens array using photolithography and Ar ion beam etching,” Chin. J. Quantum. Electron. 15, 66–73 (1998). (in Chinese)

Moon, S.

S. Moon, S. Kang, and J. U. Bu, “Fabrication of polymeric microlens hemispherical shape using micromolding,” Opt. Eng. 41, 2267–2270 (2002).
[Crossref]

Oliveira, P.

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Replication microlens fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13, 177–182 (1998).
[Crossref]

Paetzel, R.

L. Herbst and R. Paetzel, “High-power excimer laser micromachining,” Proc. SPIE 6106, 610606-1~7 (2006).

Paineaua, S.

F. Quentela, J. Fieretb, A. S. Holmesc, and S. Paineaua, “Multilevel diffractive optical element manufacture by excimer laser ablation and halftone masks,” Proc. SPIE 4274, 420–31 (2001).
[Crossref]

Pedder, J. E.

A. S. Holmes, J. E. Pedder, and K. L. Boehlen, “Advanced Laser Micromachining Processes for MEMS and Optical Applications,” Proc. SPIE 6261, 62611E-1~9 (2006).

Qiu, C. K.

J. Yao, J. Q. Su, F. H. Gao, F. Gao, Y. K. Guo, C. L. Du, H. J. Zeng, and C. K. Qiu, “Refraction microlens array made of bichromate gelatine by enzyme solution with coding gray tone mask,” Chin. J. Lasers A 28, 633–636 (2001). (in Chinese)

Quentela, F.

F. Quentela, J. Fieretb, A. S. Holmesc, and S. Paineaua, “Multilevel diffractive optical element manufacture by excimer laser ablation and halftone masks,” Proc. SPIE 4274, 420–31 (2001).
[Crossref]

Rizvi, N. H.

N. H. Rizvi, “Production of novel 3D microstructures using excimer laser mask projection techniques,” Proc. SPIE 3680, 546–52 (1999).
[Crossref]

Song, G. R.

G. R. Song, H. Z. Yao, and Z. G. Lan, “Design and practice of film microlenses fabricated by laser chemical vapor deposition,” Optoelectron. Technol. 16, 201–208 (1996). (in Chinese)

Su, J. Q.

J. Yao, J. Q. Su, F. H. Gao, F. Gao, Y. K. Guo, C. L. Du, H. J. Zeng, and C. K. Qiu, “Refraction microlens array made of bichromate gelatine by enzyme solution with coding gray tone mask,” Chin. J. Lasers A 28, 633–636 (2001). (in Chinese)

Wang, Z. J.

Z. J. Wang, X. P. Chen, H. M. Lu, and P. S. Gu, Optics Technical Manual (China Machine Press, Beijing, China,1987), Chap.2. (in Chinese)

Xu, Q.

Q. Xu, L. M. Yang, X. W. Hu, and G. G. Yang, “Step heat-forming photoresist method for expanding the N.A. range of refractive microlens,” Acta Opt. Sin. 18, 1128–1133 (1998). (in Chinese)

Q. Xu, J. Ye, G. Y. Zhou, X. Y. Hou, G. G. Yang, Z. K. Bao, and Z. R. Yu, “Fabrication of refractive microlens array by melting photoresist,” Acta Opt. Sin. 16, 1326–1331 (1996). (in Chinese)

Yang, G. G.

Q. Xu, L. M. Yang, X. W. Hu, and G. G. Yang, “Step heat-forming photoresist method for expanding the N.A. range of refractive microlens,” Acta Opt. Sin. 18, 1128–1133 (1998). (in Chinese)

Q. Xu, J. Ye, G. Y. Zhou, X. Y. Hou, G. G. Yang, Z. K. Bao, and Z. R. Yu, “Fabrication of refractive microlens array by melting photoresist,” Acta Opt. Sin. 16, 1326–1331 (1996). (in Chinese)

Yang, L. M.

Q. Xu, L. M. Yang, X. W. Hu, and G. G. Yang, “Step heat-forming photoresist method for expanding the N.A. range of refractive microlens,” Acta Opt. Sin. 18, 1128–1133 (1998). (in Chinese)

Yao, H. Z.

G. R. Song, H. Z. Yao, and Z. G. Lan, “Design and practice of film microlenses fabricated by laser chemical vapor deposition,” Optoelectron. Technol. 16, 201–208 (1996). (in Chinese)

Yao, J.

J. Yao, J. Q. Su, F. H. Gao, F. Gao, Y. K. Guo, C. L. Du, H. J. Zeng, and C. K. Qiu, “Refraction microlens array made of bichromate gelatine by enzyme solution with coding gray tone mask,” Chin. J. Lasers A 28, 633–636 (2001). (in Chinese)

Ye, J.

Q. Xu, J. Ye, G. Y. Zhou, X. Y. Hou, G. G. Yang, Z. K. Bao, and Z. R. Yu, “Fabrication of refractive microlens array by melting photoresist,” Acta Opt. Sin. 16, 1326–1331 (1996). (in Chinese)

Yi, X. J.

X. Y. Zhang, X. J. Yi, X. G. Zhao, Z. H. Mai, M. He, and L. Q. Liu, “Fabrication of linear fused quartz microlens array using photolithography and Ar ion beam etching,” Chin. J. Quantum. Electron. 15, 66–73 (1998). (in Chinese)

Yu, Z. R.

Q. Xu, J. Ye, G. Y. Zhou, X. Y. Hou, G. G. Yang, Z. K. Bao, and Z. R. Yu, “Fabrication of refractive microlens array by melting photoresist,” Acta Opt. Sin. 16, 1326–1331 (1996). (in Chinese)

Zeng, H. J.

J. Yao, J. Q. Su, F. H. Gao, F. Gao, Y. K. Guo, C. L. Du, H. J. Zeng, and C. K. Qiu, “Refraction microlens array made of bichromate gelatine by enzyme solution with coding gray tone mask,” Chin. J. Lasers A 28, 633–636 (2001). (in Chinese)

Zhang, X. Y.

X. Y. Zhang, X. J. Yi, X. G. Zhao, Z. H. Mai, M. He, and L. Q. Liu, “Fabrication of linear fused quartz microlens array using photolithography and Ar ion beam etching,” Chin. J. Quantum. Electron. 15, 66–73 (1998). (in Chinese)

Zhao, X. G.

X. Y. Zhang, X. J. Yi, X. G. Zhao, Z. H. Mai, M. He, and L. Q. Liu, “Fabrication of linear fused quartz microlens array using photolithography and Ar ion beam etching,” Chin. J. Quantum. Electron. 15, 66–73 (1998). (in Chinese)

Zhou, G. Y.

Q. Xu, J. Ye, G. Y. Zhou, X. Y. Hou, G. G. Yang, Z. K. Bao, and Z. R. Yu, “Fabrication of refractive microlens array by melting photoresist,” Acta Opt. Sin. 16, 1326–1331 (1996). (in Chinese)

Zhu, X. L.

X. L. Zhu, S. B. Liu, T. Chen, Y. J. Jiang, and T. C. Zuo, “Analysis of X-ray photoelectron spectroscopy of polymethyl methacrylate etched by a KrF excimer laser,” Chin. Phys. Lett. 22, 1526–9 (2005).
[Crossref]

Zuo, T. C.

X. L. Zhu, S. B. Liu, T. Chen, Y. J. Jiang, and T. C. Zuo, “Analysis of X-ray photoelectron spectroscopy of polymethyl methacrylate etched by a KrF excimer laser,” Chin. Phys. Lett. 22, 1526–9 (2005).
[Crossref]

Acta Opt. Sin. (2)

Q. Xu, J. Ye, G. Y. Zhou, X. Y. Hou, G. G. Yang, Z. K. Bao, and Z. R. Yu, “Fabrication of refractive microlens array by melting photoresist,” Acta Opt. Sin. 16, 1326–1331 (1996). (in Chinese)

Q. Xu, L. M. Yang, X. W. Hu, and G. G. Yang, “Step heat-forming photoresist method for expanding the N.A. range of refractive microlens,” Acta Opt. Sin. 18, 1128–1133 (1998). (in Chinese)

Chin. J. Lasers A (1)

J. Yao, J. Q. Su, F. H. Gao, F. Gao, Y. K. Guo, C. L. Du, H. J. Zeng, and C. K. Qiu, “Refraction microlens array made of bichromate gelatine by enzyme solution with coding gray tone mask,” Chin. J. Lasers A 28, 633–636 (2001). (in Chinese)

Chin. J. Quantum. Electron. (1)

X. Y. Zhang, X. J. Yi, X. G. Zhao, Z. H. Mai, M. He, and L. Q. Liu, “Fabrication of linear fused quartz microlens array using photolithography and Ar ion beam etching,” Chin. J. Quantum. Electron. 15, 66–73 (1998). (in Chinese)

Chin. Phys. Lett. (1)

X. L. Zhu, S. B. Liu, T. Chen, Y. J. Jiang, and T. C. Zuo, “Analysis of X-ray photoelectron spectroscopy of polymethyl methacrylate etched by a KrF excimer laser,” Chin. Phys. Lett. 22, 1526–9 (2005).
[Crossref]

J. Micromech. Microeng. (1)

C. J. Hayden, “Three-dimensional excimer laser micromachining using greyscale masks,” J. Micromech. Microeng. 13, 599–603 (2003).
[Crossref]

J. Sol-Gel Sci. Technol. (1)

S. Biehl, R. Danzebrink, P. Oliveira, and M. A. Aegerter, “Replication microlens fabrication by ink-jet process,” J. Sol-Gel Sci. Technol. 13, 177–182 (1998).
[Crossref]

Microsyst. Technol. (1)

B. K. Lee, D .S. Kim, and T. H. Kwon, “Replication of microlens arrays by injection molding,” Microsyst. Technol. 10, 531–535 (2004).
[Crossref]

Opt. Eng. (1)

S. Moon, S. Kang, and J. U. Bu, “Fabrication of polymeric microlens hemispherical shape using micromolding,” Opt. Eng. 41, 2267–2270 (2002).
[Crossref]

Optoelectron. Technol. (1)

G. R. Song, H. Z. Yao, and Z. G. Lan, “Design and practice of film microlenses fabricated by laser chemical vapor deposition,” Optoelectron. Technol. 16, 201–208 (1996). (in Chinese)

Proc. SPIE (4)

F. Quentela, J. Fieretb, A. S. Holmesc, and S. Paineaua, “Multilevel diffractive optical element manufacture by excimer laser ablation and halftone masks,” Proc. SPIE 4274, 420–31 (2001).
[Crossref]

N. H. Rizvi, “Production of novel 3D microstructures using excimer laser mask projection techniques,” Proc. SPIE 3680, 546–52 (1999).
[Crossref]

A. S. Holmes, J. E. Pedder, and K. L. Boehlen, “Advanced Laser Micromachining Processes for MEMS and Optical Applications,” Proc. SPIE 6261, 62611E-1~9 (2006).

L. Herbst and R. Paetzel, “High-power excimer laser micromachining,” Proc. SPIE 6106, 610606-1~7 (2006).

Other (2)

Z. J. Wang, X. P. Chen, H. M. Lu, and P. S. Gu, Optics Technical Manual (China Machine Press, Beijing, China,1987), Chap.2. (in Chinese)

ZEMAX EE, Optical Design Program User’s Guide, January 6, 2003.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1. The principle of two-step dynamic mask method
Fig. 2.
Fig. 2. A microlens fabricated with an excimer laser
Fig. 3.
Fig. 3. Optical diagram
Fig. 4.
Fig. 4. The principle of the excimer laser diaphragm method
Fig. 5.
Fig. 5. Calculation principle of the 2D excimer laser spot energy distribution function
Fig. 6.
Fig. 6. Optical simulation of the excimer laser diaphragm method
Fig. 7.
Fig. 7. Simulation of the energy distribution on the producing platform
Fig. 8.
Fig. 8. Simulation of the energy transmission after the mask
Fig. 9.
Fig. 9. The Experimental Setup
Fig. 10.
Fig. 10. The elliptical diaphram
Fig. 11.
Fig. 11. Fabricated microlens by excimer laser diaphram method
Fig. 12.
Fig. 12. Measurement of the surface of a microlens
Fig. 13.
Fig. 13. Eching rate (on PMMA) vs fluence of KrF excimer laser
Fig. 14.
Fig. 14. Curvature radius and pulses
Fig. 15.
Fig. 15. Curvature radius and the laser pulse repetition rate
Fig. 16.
Fig. 16. Curvature radius and the laser pulse energy

Tables (2)

Tables Icon

Table 1. Comparison of parameters by different methods

Tables Icon

Table 2. Comparison of the roughness with different fabrication methods

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

dddm
l2·dddp·L
tanθdp2·L
tanθdd2·l
2·ddldpL
tanθdp2·Lddl
dd=dm
l=2·dddp·L
α=arctandd2+xl+arctandd2xl
α=2·arctandd2·lddl3·(1+dd24·l2)·x2+o(x)4

Metrics