Abstract

This paper describes a comparative study of finite-difference time-domain (FDTD) and analytical evaluations of electromagnetic fields in the vicinity of dimers of metallic nanospheres of plasmonics-active metals. The results of these two computational methods, to determine electromagnetic field enhancement in the region often referred to as “hot spots” between the two nanospheres forming the dimer, were compared and a strong correlation observed for gold dimers. The analytical evaluation involved the use of the spherical-harmonic addition theorem to relate the multipole expansion coefficients between the two nanospheres. In these evaluations, the spacing between two nanospheres forming the dimer was varied to obtain the effect of nanoparticle spacing on the electromagnetic fields in the regions between the nanostructures. Gold and silver were the metals investigated in our work as they exhibit substantial plasmon resonance properties in the ultraviolet, visible, and near-infrared spectral regimes. The results indicate excellent correlation between the two computational methods, especially for gold nanosphere dimers with only a 5-10% difference between the two methods. The effect of varying the diameters of the nanospheres forming the dimer, on the electromagnetic field enhancement, was also studied.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Kerker, "Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids," Acc. Chem. Res. 17, 271-277 (1984).
    [CrossRef]
  2. R. K. Chang and T. E. Furtak, eds., Surface-Enhanced Raman Scattering (Plenum, New York, 1982).
  3. A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced Raman scattering," J. Phys. Condens. Matter 4,1143-1212 (1992).
    [CrossRef]
  4. P. K. Aravind and H. Metiu, "The enhancement of Raman and fluorescent intensity by small surface roughness. Changes in dipole emission," Chem. Phys. Lett. 74, 301-305 (1980).
    [CrossRef]
  5. M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," J. Am. Soc. 99, 5215-5217 (1977).
    [CrossRef]
  6. D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1-20 (1977).
    [CrossRef]
  7. T. Vo-Dinh, M. Y. K. Hiromoto, G.M. Begun, and R. L. Moody, "Surface-enhanced Raman spectrometry for trace organic-analysis," Anal. Chem. 56, 1667-1670 (1984).
    [CrossRef]
  8. Y. C. Cao, J. Rongchao, and C. A. Mirkin, "Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection," Science 297, 1536-1540 (2002).
    [CrossRef] [PubMed]
  9. T. Vo-Dinh, "Surface-enhanced Raman spectroscopy using metallic nanostructures," Trends in Anal.Chem. 17, 557-582 (1998).
    [CrossRef]
  10. T. Vo-Dinh, K. Houck, and D. L. Stokes, "Surface-Enhanced Raman Gene Probes," Anal. Chem. 66, 3379-3383 (1994).
    [CrossRef] [PubMed]
  11. S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997).
    [CrossRef] [PubMed]
  12. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York 1983).
  13. A. Dhawan and J. F. Muth, "Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix," Nanotechnol. 17, 2504-2511 (2006).
    [CrossRef]
  14. H. C. Van de Hulst, Light scattering by small particles (John Wiley & Sons, New York, 1957).
  15. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, New York, 1999).
  16. A. Dhawan, M. D. Gerhold, and T. Vo-Dinh, "Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures for Surface-Enhanced Raman Scattering (SERS)," NanoBiotechnol. (to be published).
  17. M. Futamata, Y. Maruyama, and M. Ishikawa, "Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method," J. Phys. Chem. B 107, 7607−7617 (2003).
    [CrossRef]
  18. K. Kneipp, M. Moskovits, H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications, (Springer, Berlin, 2006).
    [CrossRef]
  19. H. Xu, E. J. Bjerneld, M. Kall and L. Borjesson, "Spectroscopy of single Hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999).
    [CrossRef]
  20. B. Vlckova, I. Pavel, M. Sladkova, K. Siskova and M. Slouf, "Single molecule SERS: Perspectives of analytical applications," J. Mol. Struct. 834,42-47 (2007).
    [CrossRef]
  21. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, "Controlling the surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257−259 (2003).
    [CrossRef]
  22. M. B. Wabuyele, F. Yan, G. D. Griffin, and T. Vo-Dinh, "Hyperspectral surface-enhanced Raman imaging of labeled silver nanoparticles in single cells," Rev. Sci. Instrum. 76, 063710-1−063710-7 (2005).
    [CrossRef]
  23. K. Kneipp, A. S. Haka, H. Kneipp, K. Badizadegan, N. Yoshizawa, C. Boone, K. E. Shafer-Peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, "Controlling the surface enhanced Raman effect via the nanoshell geometry," Appl. Spectrosc. 56, 150−154 (2002).
    [CrossRef]
  24. K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402-1−227402-4 (2003).
    [CrossRef]
  25. G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, "Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems," Mater. Sci. Eng. C 27, 1347-1350 (2007).
    [CrossRef]
  26. M. I. Mishchenko, J. W. Hovenier and L. D. Travis, eds., Light Scattering by Nonspherical Particles, (Academic Press, San Diego, 2000).
  27. J. M. Gerardy and M. Ausloos, "Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. The long-wavelength limit," Phys. Rev. B 22, 4950-4959 (1980).
    [CrossRef]
  28. M. Schmeits and L. Dambly, "Fast electron scattering by bispherical surface-plasmon modes," Phys. Rev. B 44, 12706-12711 (1991).
    [CrossRef]
  29. M. Quinten, A. Leitner, J. R. Krenn and F. R. Aussenegg, "Electromagnetic energy transport via linear chains of silver nanoparticles," Opt. Lett. 23, 1331-1333 (1998).
    [CrossRef]
  30. M. I. Stockman, K. Li, X. Li and D. J. Bergman, "An efficient nanolens: Self-similar chain of metal nanospheres," Proc. SPIE 5512, 87-99 (2004).
    [CrossRef]
  31. S. L. Zou and G. C. Schatz, "Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields," Chem. Phys. Lett. 403, 62-67 (2005).
    [CrossRef]
  32. E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, "Optical Properties of Metal Nanoshells," Phys. Chem. B 108, 1224-1229 (2004).
    [CrossRef]
  33. L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408-1-235408-7 (2005).
    [CrossRef]
  34. F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon Resonances of a Gold Nanostar," Nano Lett. 7, 729-732 (2007).
    [CrossRef] [PubMed]
  35. C. Oubre and P. Nordlander, "Finite-difference Time-domain Studies of the Optical Properties of Nanoshell Dimers," J. Phys. Chem. B,  109, 10042-10051 (2005).
    [CrossRef]
  36. P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon Hybridization in Nanoparticle Dimers," Nano Lett. 4, 899-903 (2005).
    [CrossRef]
  37. W. A. Challener, I. K. Sendur and C. Peng, "Scattered field formulation of finite-difference time-domain for a focused light beam in dense media with lossy materials," Opt. Express 11, 3160-3170 (2003).
    [CrossRef] [PubMed]
  38. C. M. Dutta, T. A. Ali, D. W. Brandl, T. Park, and P. Nordlander, "Plasmonic properties of a metallic torus," J. Chem. Phys. 129, 084706-1-084706-9 (2008).
    [CrossRef]
  39. R. Dallapiccola, A. Gopinath, F. Stellacci, and L. D. Negro, "Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles," Opt. Express 16, 5544-5555 (2008).
    [CrossRef] [PubMed]
  40. B. Willingham, D.W. Brandl, and P. Nordlander, "Plasmon hybridization in nanorod dimers," Appl. Phys. B 93, 209-216 (2008).
    [CrossRef]
  41. S. J. Norton and T. Vo-Dinh, "Optical response of linear chains of metal nanospheres and nanospheroids," J. Opt. Soc. Am. A 25, 2767-2775 (2008).
    [CrossRef]
  42. J. Caola, "Solid harmonics and their addition theorems," J. Phys. A 11, L23-L25 (1978).
    [CrossRef]
  43. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method; 2nd ed. (Artech, Boston, MA, 2000).
  44. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998).
  45. H. Ko, S. Singamaneni, and V. V. Tsukruk, "Nanostructured Surfaces and Assemblies as SERS Media," Small 4, 1576-1599 (2008).
    [CrossRef] [PubMed]
  46. R. G. Osifchin, R. P. Andres, J. I. Henderson, C. P. Kubiak and R. N. Domine, "Synthesis of nanoscale arrays of coupled metal dots," Nanotechnol. 7, 412-416 (1996).
    [CrossRef]

2008 (4)

2007 (3)

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon Resonances of a Gold Nanostar," Nano Lett. 7, 729-732 (2007).
[CrossRef] [PubMed]

B. Vlckova, I. Pavel, M. Sladkova, K. Siskova and M. Slouf, "Single molecule SERS: Perspectives of analytical applications," J. Mol. Struct. 834,42-47 (2007).
[CrossRef]

G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, "Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems," Mater. Sci. Eng. C 27, 1347-1350 (2007).
[CrossRef]

2006 (1)

A. Dhawan and J. F. Muth, "Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix," Nanotechnol. 17, 2504-2511 (2006).
[CrossRef]

2005 (3)

C. Oubre and P. Nordlander, "Finite-difference Time-domain Studies of the Optical Properties of Nanoshell Dimers," J. Phys. Chem. B,  109, 10042-10051 (2005).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon Hybridization in Nanoparticle Dimers," Nano Lett. 4, 899-903 (2005).
[CrossRef]

S. L. Zou and G. C. Schatz, "Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields," Chem. Phys. Lett. 403, 62-67 (2005).
[CrossRef]

2004 (2)

E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, "Optical Properties of Metal Nanoshells," Phys. Chem. B 108, 1224-1229 (2004).
[CrossRef]

M. I. Stockman, K. Li, X. Li and D. J. Bergman, "An efficient nanolens: Self-similar chain of metal nanospheres," Proc. SPIE 5512, 87-99 (2004).
[CrossRef]

2003 (3)

W. A. Challener, I. K. Sendur and C. Peng, "Scattered field formulation of finite-difference time-domain for a focused light beam in dense media with lossy materials," Opt. Express 11, 3160-3170 (2003).
[CrossRef] [PubMed]

M. Futamata, Y. Maruyama, and M. Ishikawa, "Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method," J. Phys. Chem. B 107, 7607−7617 (2003).
[CrossRef]

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, "Controlling the surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257−259 (2003).
[CrossRef]

2002 (2)

1999 (1)

H. Xu, E. J. Bjerneld, M. Kall and L. Borjesson, "Spectroscopy of single Hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

1998 (2)

1997 (1)

S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

1996 (1)

R. G. Osifchin, R. P. Andres, J. I. Henderson, C. P. Kubiak and R. N. Domine, "Synthesis of nanoscale arrays of coupled metal dots," Nanotechnol. 7, 412-416 (1996).
[CrossRef]

1994 (1)

T. Vo-Dinh, K. Houck, and D. L. Stokes, "Surface-Enhanced Raman Gene Probes," Anal. Chem. 66, 3379-3383 (1994).
[CrossRef] [PubMed]

1992 (1)

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced Raman scattering," J. Phys. Condens. Matter 4,1143-1212 (1992).
[CrossRef]

1991 (1)

M. Schmeits and L. Dambly, "Fast electron scattering by bispherical surface-plasmon modes," Phys. Rev. B 44, 12706-12711 (1991).
[CrossRef]

1984 (2)

M. Kerker, "Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids," Acc. Chem. Res. 17, 271-277 (1984).
[CrossRef]

T. Vo-Dinh, M. Y. K. Hiromoto, G.M. Begun, and R. L. Moody, "Surface-enhanced Raman spectrometry for trace organic-analysis," Anal. Chem. 56, 1667-1670 (1984).
[CrossRef]

1980 (2)

P. K. Aravind and H. Metiu, "The enhancement of Raman and fluorescent intensity by small surface roughness. Changes in dipole emission," Chem. Phys. Lett. 74, 301-305 (1980).
[CrossRef]

J. M. Gerardy and M. Ausloos, "Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. The long-wavelength limit," Phys. Rev. B 22, 4950-4959 (1980).
[CrossRef]

1978 (1)

J. Caola, "Solid harmonics and their addition theorems," J. Phys. A 11, L23-L25 (1978).
[CrossRef]

1977 (2)

M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," J. Am. Soc. 99, 5215-5217 (1977).
[CrossRef]

D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1-20 (1977).
[CrossRef]

Akemann, W.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced Raman scattering," J. Phys. Condens. Matter 4,1143-1212 (1992).
[CrossRef]

Albrecht, M. G.

M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," J. Am. Soc. 99, 5215-5217 (1977).
[CrossRef]

Ali, T. A.

C. M. Dutta, T. A. Ali, D. W. Brandl, T. Park, and P. Nordlander, "Plasmonic properties of a metallic torus," J. Chem. Phys. 129, 084706-1-084706-9 (2008).
[CrossRef]

Andres, R. P.

R. G. Osifchin, R. P. Andres, J. I. Henderson, C. P. Kubiak and R. N. Domine, "Synthesis of nanoscale arrays of coupled metal dots," Nanotechnol. 7, 412-416 (1996).
[CrossRef]

Aravind, P. K.

P. K. Aravind and H. Metiu, "The enhancement of Raman and fluorescent intensity by small surface roughness. Changes in dipole emission," Chem. Phys. Lett. 74, 301-305 (1980).
[CrossRef]

Atwater, H. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408-1-235408-7 (2005).
[CrossRef]

Ausloos, M.

J. M. Gerardy and M. Ausloos, "Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. The long-wavelength limit," Phys. Rev. B 22, 4950-4959 (1980).
[CrossRef]

Aussenegg, F. R.

Badizadegan, K.

Bailey, R. C.

E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, "Optical Properties of Metal Nanoshells," Phys. Chem. B 108, 1224-1229 (2004).
[CrossRef]

Begun, G.M.

T. Vo-Dinh, M. Y. K. Hiromoto, G.M. Begun, and R. L. Moody, "Surface-enhanced Raman spectrometry for trace organic-analysis," Anal. Chem. 56, 1667-1670 (1984).
[CrossRef]

Bello, V.

G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, "Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems," Mater. Sci. Eng. C 27, 1347-1350 (2007).
[CrossRef]

Bergman, D. J.

M. I. Stockman, K. Li, X. Li and D. J. Bergman, "An efficient nanolens: Self-similar chain of metal nanospheres," Proc. SPIE 5512, 87-99 (2004).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402-1−227402-4 (2003).
[CrossRef]

Bjerneld, E. J.

H. Xu, E. J. Bjerneld, M. Kall and L. Borjesson, "Spectroscopy of single Hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Boone, C.

Borjesson, L.

H. Xu, E. J. Bjerneld, M. Kall and L. Borjesson, "Spectroscopy of single Hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Brandl, D. W.

C. M. Dutta, T. A. Ali, D. W. Brandl, T. Park, and P. Nordlander, "Plasmonic properties of a metallic torus," J. Chem. Phys. 129, 084706-1-084706-9 (2008).
[CrossRef]

Brandl, D.W.

B. Willingham, D.W. Brandl, and P. Nordlander, "Plasmon hybridization in nanorod dimers," Appl. Phys. B 93, 209-216 (2008).
[CrossRef]

Cao, Y. C.

Y. C. Cao, J. Rongchao, and C. A. Mirkin, "Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection," Science 297, 1536-1540 (2002).
[CrossRef] [PubMed]

Caola, J.

J. Caola, "Solid harmonics and their addition theorems," J. Phys. A 11, L23-L25 (1978).
[CrossRef]

Challener, W. A.

Creighton, J. A.

M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," J. Am. Soc. 99, 5215-5217 (1977).
[CrossRef]

Dallapiccola, R.

Dambly, L.

M. Schmeits and L. Dambly, "Fast electron scattering by bispherical surface-plasmon modes," Phys. Rev. B 44, 12706-12711 (1991).
[CrossRef]

Dasari, R. R.

Dhawan, A.

A. Dhawan and J. F. Muth, "Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix," Nanotechnol. 17, 2504-2511 (2006).
[CrossRef]

A. Dhawan, M. D. Gerhold, and T. Vo-Dinh, "Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures for Surface-Enhanced Raman Scattering (SERS)," NanoBiotechnol. (to be published).

Domine, R. N.

R. G. Osifchin, R. P. Andres, J. I. Henderson, C. P. Kubiak and R. N. Domine, "Synthesis of nanoscale arrays of coupled metal dots," Nanotechnol. 7, 412-416 (1996).
[CrossRef]

Dutta, C. M.

C. M. Dutta, T. A. Ali, D. W. Brandl, T. Park, and P. Nordlander, "Plasmonic properties of a metallic torus," J. Chem. Phys. 129, 084706-1-084706-9 (2008).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Feld, M. S.

Futamata, M.

M. Futamata, Y. Maruyama, and M. Ishikawa, "Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method," J. Phys. Chem. B 107, 7607−7617 (2003).
[CrossRef]

Gerardy, J. M.

J. M. Gerardy and M. Ausloos, "Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. The long-wavelength limit," Phys. Rev. B 22, 4950-4959 (1980).
[CrossRef]

Gerhold, M. D.

A. Dhawan, M. D. Gerhold, and T. Vo-Dinh, "Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures for Surface-Enhanced Raman Scattering (SERS)," NanoBiotechnol. (to be published).

Gopinath, A.

Grabhorn, H.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced Raman scattering," J. Phys. Condens. Matter 4,1143-1212 (1992).
[CrossRef]

Griffin, G. D.

M. B. Wabuyele, F. Yan, G. D. Griffin, and T. Vo-Dinh, "Hyperspectral surface-enhanced Raman imaging of labeled silver nanoparticles in single cells," Rev. Sci. Instrum. 76, 063710-1−063710-7 (2005).
[CrossRef]

Hafner, J. H.

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon Resonances of a Gold Nanostar," Nano Lett. 7, 729-732 (2007).
[CrossRef] [PubMed]

Haka, A. S.

Halas, N. J.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, "Controlling the surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257−259 (2003).
[CrossRef]

Hao, E.

E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, "Optical Properties of Metal Nanoshells," Phys. Chem. B 108, 1224-1229 (2004).
[CrossRef]

Hao, F.

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon Resonances of a Gold Nanostar," Nano Lett. 7, 729-732 (2007).
[CrossRef] [PubMed]

Henderson, J. I.

R. G. Osifchin, R. P. Andres, J. I. Henderson, C. P. Kubiak and R. N. Domine, "Synthesis of nanoscale arrays of coupled metal dots," Nanotechnol. 7, 412-416 (1996).
[CrossRef]

Hiromoto, M. Y. K.

T. Vo-Dinh, M. Y. K. Hiromoto, G.M. Begun, and R. L. Moody, "Surface-enhanced Raman spectrometry for trace organic-analysis," Anal. Chem. 56, 1667-1670 (1984).
[CrossRef]

Hirsch, L. R.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, "Controlling the surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257−259 (2003).
[CrossRef]

Houck, K.

T. Vo-Dinh, K. Houck, and D. L. Stokes, "Surface-Enhanced Raman Gene Probes," Anal. Chem. 66, 3379-3383 (1994).
[CrossRef] [PubMed]

Hupp, J. T.

E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, "Optical Properties of Metal Nanoshells," Phys. Chem. B 108, 1224-1229 (2004).
[CrossRef]

Ishikawa, M.

M. Futamata, Y. Maruyama, and M. Ishikawa, "Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method," J. Phys. Chem. B 107, 7607−7617 (2003).
[CrossRef]

Jackson, J. B.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, "Controlling the surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257−259 (2003).
[CrossRef]

Jeanmaire, D. L.

D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1-20 (1977).
[CrossRef]

Kall, M.

H. Xu, E. J. Bjerneld, M. Kall and L. Borjesson, "Spectroscopy of single Hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Kerker, M.

M. Kerker, "Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids," Acc. Chem. Res. 17, 271-277 (1984).
[CrossRef]

Kneipp, H.

Kneipp, K.

Ko, H.

H. Ko, S. Singamaneni, and V. V. Tsukruk, "Nanostructured Surfaces and Assemblies as SERS Media," Small 4, 1576-1599 (2008).
[CrossRef] [PubMed]

Krenn, J. R.

Kubiak, C. P.

R. G. Osifchin, R. P. Andres, J. I. Henderson, C. P. Kubiak and R. N. Domine, "Synthesis of nanoscale arrays of coupled metal dots," Nanotechnol. 7, 412-416 (1996).
[CrossRef]

Leitner, A.

Li, K.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon Hybridization in Nanoparticle Dimers," Nano Lett. 4, 899-903 (2005).
[CrossRef]

M. I. Stockman, K. Li, X. Li and D. J. Bergman, "An efficient nanolens: Self-similar chain of metal nanospheres," Proc. SPIE 5512, 87-99 (2004).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402-1−227402-4 (2003).
[CrossRef]

Li, S.

E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, "Optical Properties of Metal Nanoshells," Phys. Chem. B 108, 1224-1229 (2004).
[CrossRef]

Li, X.

M. I. Stockman, K. Li, X. Li and D. J. Bergman, "An efficient nanolens: Self-similar chain of metal nanospheres," Proc. SPIE 5512, 87-99 (2004).
[CrossRef]

Maier, S. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408-1-235408-7 (2005).
[CrossRef]

Maruyama, Y.

M. Futamata, Y. Maruyama, and M. Ishikawa, "Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method," J. Phys. Chem. B 107, 7607−7617 (2003).
[CrossRef]

Mattei, G.

G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, "Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems," Mater. Sci. Eng. C 27, 1347-1350 (2007).
[CrossRef]

Mazzoldi, P.

G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, "Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems," Mater. Sci. Eng. C 27, 1347-1350 (2007).
[CrossRef]

Metiu, H.

P. K. Aravind and H. Metiu, "The enhancement of Raman and fluorescent intensity by small surface roughness. Changes in dipole emission," Chem. Phys. Lett. 74, 301-305 (1980).
[CrossRef]

Mirkin, C. A.

Y. C. Cao, J. Rongchao, and C. A. Mirkin, "Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection," Science 297, 1536-1540 (2002).
[CrossRef] [PubMed]

Moody, R. L.

T. Vo-Dinh, M. Y. K. Hiromoto, G.M. Begun, and R. L. Moody, "Surface-enhanced Raman spectrometry for trace organic-analysis," Anal. Chem. 56, 1667-1670 (1984).
[CrossRef]

Motz, J. T.

Mrozek, I.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced Raman scattering," J. Phys. Condens. Matter 4,1143-1212 (1992).
[CrossRef]

Muth, J. F.

A. Dhawan and J. F. Muth, "Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix," Nanotechnol. 17, 2504-2511 (2006).
[CrossRef]

Negro, L. D.

Nehl, C. L.

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon Resonances of a Gold Nanostar," Nano Lett. 7, 729-732 (2007).
[CrossRef] [PubMed]

Nie, S.

S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Nordlander, P.

B. Willingham, D.W. Brandl, and P. Nordlander, "Plasmon hybridization in nanorod dimers," Appl. Phys. B 93, 209-216 (2008).
[CrossRef]

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon Resonances of a Gold Nanostar," Nano Lett. 7, 729-732 (2007).
[CrossRef] [PubMed]

C. Oubre and P. Nordlander, "Finite-difference Time-domain Studies of the Optical Properties of Nanoshell Dimers," J. Phys. Chem. B,  109, 10042-10051 (2005).
[CrossRef]

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon Hybridization in Nanoparticle Dimers," Nano Lett. 4, 899-903 (2005).
[CrossRef]

C. M. Dutta, T. A. Ali, D. W. Brandl, T. Park, and P. Nordlander, "Plasmonic properties of a metallic torus," J. Chem. Phys. 129, 084706-1-084706-9 (2008).
[CrossRef]

Norton, S. J.

Osifchin, R. G.

R. G. Osifchin, R. P. Andres, J. I. Henderson, C. P. Kubiak and R. N. Domine, "Synthesis of nanoscale arrays of coupled metal dots," Nanotechnol. 7, 412-416 (1996).
[CrossRef]

Otto, A.

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced Raman scattering," J. Phys. Condens. Matter 4,1143-1212 (1992).
[CrossRef]

Oubre, C.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon Hybridization in Nanoparticle Dimers," Nano Lett. 4, 899-903 (2005).
[CrossRef]

C. Oubre and P. Nordlander, "Finite-difference Time-domain Studies of the Optical Properties of Nanoshell Dimers," J. Phys. Chem. B,  109, 10042-10051 (2005).
[CrossRef]

Park, T.

C. M. Dutta, T. A. Ali, D. W. Brandl, T. Park, and P. Nordlander, "Plasmonic properties of a metallic torus," J. Chem. Phys. 129, 084706-1-084706-9 (2008).
[CrossRef]

Pavel, I.

B. Vlckova, I. Pavel, M. Sladkova, K. Siskova and M. Slouf, "Single molecule SERS: Perspectives of analytical applications," J. Mol. Struct. 834,42-47 (2007).
[CrossRef]

Pellegrini, G.

G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, "Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems," Mater. Sci. Eng. C 27, 1347-1350 (2007).
[CrossRef]

Peng, C.

Penninkhof, J. J.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408-1-235408-7 (2005).
[CrossRef]

Polman, A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408-1-235408-7 (2005).
[CrossRef]

Prodan, E.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon Hybridization in Nanoparticle Dimers," Nano Lett. 4, 899-903 (2005).
[CrossRef]

Quinten, M.

Rongchao, J.

Y. C. Cao, J. Rongchao, and C. A. Mirkin, "Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection," Science 297, 1536-1540 (2002).
[CrossRef] [PubMed]

Schatz, G. C.

S. L. Zou and G. C. Schatz, "Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields," Chem. Phys. Lett. 403, 62-67 (2005).
[CrossRef]

E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, "Optical Properties of Metal Nanoshells," Phys. Chem. B 108, 1224-1229 (2004).
[CrossRef]

Schmeits, M.

M. Schmeits and L. Dambly, "Fast electron scattering by bispherical surface-plasmon modes," Phys. Rev. B 44, 12706-12711 (1991).
[CrossRef]

Sendur, I. K.

Shafer-Peltier, K. E.

Singamaneni, S.

H. Ko, S. Singamaneni, and V. V. Tsukruk, "Nanostructured Surfaces and Assemblies as SERS Media," Small 4, 1576-1599 (2008).
[CrossRef] [PubMed]

Siskova, K.

B. Vlckova, I. Pavel, M. Sladkova, K. Siskova and M. Slouf, "Single molecule SERS: Perspectives of analytical applications," J. Mol. Struct. 834,42-47 (2007).
[CrossRef]

Sladkova, M.

B. Vlckova, I. Pavel, M. Sladkova, K. Siskova and M. Slouf, "Single molecule SERS: Perspectives of analytical applications," J. Mol. Struct. 834,42-47 (2007).
[CrossRef]

Slouf, M.

B. Vlckova, I. Pavel, M. Sladkova, K. Siskova and M. Slouf, "Single molecule SERS: Perspectives of analytical applications," J. Mol. Struct. 834,42-47 (2007).
[CrossRef]

Stellacci, F.

Stockman, M. I.

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon Hybridization in Nanoparticle Dimers," Nano Lett. 4, 899-903 (2005).
[CrossRef]

M. I. Stockman, K. Li, X. Li and D. J. Bergman, "An efficient nanolens: Self-similar chain of metal nanospheres," Proc. SPIE 5512, 87-99 (2004).
[CrossRef]

K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402-1−227402-4 (2003).
[CrossRef]

Stokes, D. L.

T. Vo-Dinh, K. Houck, and D. L. Stokes, "Surface-Enhanced Raman Gene Probes," Anal. Chem. 66, 3379-3383 (1994).
[CrossRef] [PubMed]

Sweatlock, L. A.

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408-1-235408-7 (2005).
[CrossRef]

Tsukruk, V. V.

H. Ko, S. Singamaneni, and V. V. Tsukruk, "Nanostructured Surfaces and Assemblies as SERS Media," Small 4, 1576-1599 (2008).
[CrossRef] [PubMed]

Van Duyne, R. P.

D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1-20 (1977).
[CrossRef]

Vlckova, B.

B. Vlckova, I. Pavel, M. Sladkova, K. Siskova and M. Slouf, "Single molecule SERS: Perspectives of analytical applications," J. Mol. Struct. 834,42-47 (2007).
[CrossRef]

Vo-Dinh, T.

S. J. Norton and T. Vo-Dinh, "Optical response of linear chains of metal nanospheres and nanospheroids," J. Opt. Soc. Am. A 25, 2767-2775 (2008).
[CrossRef]

T. Vo-Dinh, "Surface-enhanced Raman spectroscopy using metallic nanostructures," Trends in Anal.Chem. 17, 557-582 (1998).
[CrossRef]

T. Vo-Dinh, K. Houck, and D. L. Stokes, "Surface-Enhanced Raman Gene Probes," Anal. Chem. 66, 3379-3383 (1994).
[CrossRef] [PubMed]

T. Vo-Dinh, M. Y. K. Hiromoto, G.M. Begun, and R. L. Moody, "Surface-enhanced Raman spectrometry for trace organic-analysis," Anal. Chem. 56, 1667-1670 (1984).
[CrossRef]

A. Dhawan, M. D. Gerhold, and T. Vo-Dinh, "Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures for Surface-Enhanced Raman Scattering (SERS)," NanoBiotechnol. (to be published).

M. B. Wabuyele, F. Yan, G. D. Griffin, and T. Vo-Dinh, "Hyperspectral surface-enhanced Raman imaging of labeled silver nanoparticles in single cells," Rev. Sci. Instrum. 76, 063710-1−063710-7 (2005).
[CrossRef]

Wabuyele, M. B.

M. B. Wabuyele, F. Yan, G. D. Griffin, and T. Vo-Dinh, "Hyperspectral surface-enhanced Raman imaging of labeled silver nanoparticles in single cells," Rev. Sci. Instrum. 76, 063710-1−063710-7 (2005).
[CrossRef]

West, J. L.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, "Controlling the surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257−259 (2003).
[CrossRef]

Westcott, S. L.

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, "Controlling the surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257−259 (2003).
[CrossRef]

Willingham, B.

B. Willingham, D.W. Brandl, and P. Nordlander, "Plasmon hybridization in nanorod dimers," Appl. Phys. B 93, 209-216 (2008).
[CrossRef]

Xu, H.

H. Xu, E. J. Bjerneld, M. Kall and L. Borjesson, "Spectroscopy of single Hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Yan, F.

M. B. Wabuyele, F. Yan, G. D. Griffin, and T. Vo-Dinh, "Hyperspectral surface-enhanced Raman imaging of labeled silver nanoparticles in single cells," Rev. Sci. Instrum. 76, 063710-1−063710-7 (2005).
[CrossRef]

Yoshizawa, N.

Zou, S.

E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, "Optical Properties of Metal Nanoshells," Phys. Chem. B 108, 1224-1229 (2004).
[CrossRef]

Zou, S. L.

S. L. Zou and G. C. Schatz, "Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields," Chem. Phys. Lett. 403, 62-67 (2005).
[CrossRef]

Acc. Chem. Res. (1)

M. Kerker, "Electromagnetic model for surface-enhanced Raman scattering (SERS) on metal colloids," Acc. Chem. Res. 17, 271-277 (1984).
[CrossRef]

Anal. Chem. (2)

T. Vo-Dinh, M. Y. K. Hiromoto, G.M. Begun, and R. L. Moody, "Surface-enhanced Raman spectrometry for trace organic-analysis," Anal. Chem. 56, 1667-1670 (1984).
[CrossRef]

T. Vo-Dinh, K. Houck, and D. L. Stokes, "Surface-Enhanced Raman Gene Probes," Anal. Chem. 66, 3379-3383 (1994).
[CrossRef] [PubMed]

Appl. Phys. B (1)

B. Willingham, D.W. Brandl, and P. Nordlander, "Plasmon hybridization in nanorod dimers," Appl. Phys. B 93, 209-216 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West, N. J. Halas, "Controlling the surface enhanced Raman effect via the nanoshell geometry," Appl. Phys. Lett. 82, 257−259 (2003).
[CrossRef]

Appl. Spectrosc. (1)

Chem. (1)

T. Vo-Dinh, "Surface-enhanced Raman spectroscopy using metallic nanostructures," Trends in Anal.Chem. 17, 557-582 (1998).
[CrossRef]

Chem. Phys. Lett. (2)

P. K. Aravind and H. Metiu, "The enhancement of Raman and fluorescent intensity by small surface roughness. Changes in dipole emission," Chem. Phys. Lett. 74, 301-305 (1980).
[CrossRef]

S. L. Zou and G. C. Schatz, "Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields," Chem. Phys. Lett. 403, 62-67 (2005).
[CrossRef]

J. Am. Soc. (1)

M. G. Albrecht and J. A. Creighton, "Anomalously intense Raman spectra of pyridine at a silver electrode," J. Am. Soc. 99, 5215-5217 (1977).
[CrossRef]

J. Electroanal. Chem. (1)

D. L. Jeanmaire and R. P. Van Duyne, "Surface Raman spectroelectrochemistry. Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode," J. Electroanal. Chem. 84, 1-20 (1977).
[CrossRef]

J. Mol. Struct. (1)

B. Vlckova, I. Pavel, M. Sladkova, K. Siskova and M. Slouf, "Single molecule SERS: Perspectives of analytical applications," J. Mol. Struct. 834,42-47 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. A (1)

J. Caola, "Solid harmonics and their addition theorems," J. Phys. A 11, L23-L25 (1978).
[CrossRef]

J. Phys. Chem. B (2)

M. Futamata, Y. Maruyama, and M. Ishikawa, "Local electric field and scattering cross section of Ag nanoparticles under surface plasmon resonance by finite difference time domain method," J. Phys. Chem. B 107, 7607−7617 (2003).
[CrossRef]

C. Oubre and P. Nordlander, "Finite-difference Time-domain Studies of the Optical Properties of Nanoshell Dimers," J. Phys. Chem. B,  109, 10042-10051 (2005).
[CrossRef]

J. Phys. Condens. Matter (1)

A. Otto, I. Mrozek, H. Grabhorn, and W. Akemann, "Surface-enhanced Raman scattering," J. Phys. Condens. Matter 4,1143-1212 (1992).
[CrossRef]

Mater. Sci. Eng. C (1)

G. Pellegrini, G. Mattei, V. Bello, and P. Mazzoldi, "Interacting metal nanoparticles: Optical properties from nanoparticle dimers to core-satellite systems," Mater. Sci. Eng. C 27, 1347-1350 (2007).
[CrossRef]

Nano Lett. (2)

P. Nordlander, C. Oubre, E. Prodan, K. Li, and M. I. Stockman, "Plasmon Hybridization in Nanoparticle Dimers," Nano Lett. 4, 899-903 (2005).
[CrossRef]

F. Hao, C. L. Nehl, J. H. Hafner, and P. Nordlander, "Plasmon Resonances of a Gold Nanostar," Nano Lett. 7, 729-732 (2007).
[CrossRef] [PubMed]

NanoBiotechnol. (1)

A. Dhawan, M. D. Gerhold, and T. Vo-Dinh, "Theoretical Simulation and Focused Ion Beam Fabrication of Gold Nanostructures for Surface-Enhanced Raman Scattering (SERS)," NanoBiotechnol. (to be published).

Nanotechnol. (2)

A. Dhawan and J. F. Muth, "Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix," Nanotechnol. 17, 2504-2511 (2006).
[CrossRef]

R. G. Osifchin, R. P. Andres, J. I. Henderson, C. P. Kubiak and R. N. Domine, "Synthesis of nanoscale arrays of coupled metal dots," Nanotechnol. 7, 412-416 (1996).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Chem. B (1)

E. Hao, S. Li, R. C. Bailey, S. Zou, G. C. Schatz, and J. T. Hupp, "Optical Properties of Metal Nanoshells," Phys. Chem. B 108, 1224-1229 (2004).
[CrossRef]

Phys. Rev. B (2)

J. M. Gerardy and M. Ausloos, "Absorption spectrum of clusters of spheres from the general solution of Maxwell's equations. The long-wavelength limit," Phys. Rev. B 22, 4950-4959 (1980).
[CrossRef]

M. Schmeits and L. Dambly, "Fast electron scattering by bispherical surface-plasmon modes," Phys. Rev. B 44, 12706-12711 (1991).
[CrossRef]

Phys. Rev. Lett. (1)

H. Xu, E. J. Bjerneld, M. Kall and L. Borjesson, "Spectroscopy of single Hemoglobin molecules by surface enhanced Raman scattering," Phys. Rev. Lett. 83, 4357-4360 (1999).
[CrossRef]

Proc. SPIE (1)

M. I. Stockman, K. Li, X. Li and D. J. Bergman, "An efficient nanolens: Self-similar chain of metal nanospheres," Proc. SPIE 5512, 87-99 (2004).
[CrossRef]

Science (2)

S. Nie and S. R. Emory, "Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering," Science 275, 1102-1106 (1997).
[CrossRef] [PubMed]

Y. C. Cao, J. Rongchao, and C. A. Mirkin, "Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection," Science 297, 1536-1540 (2002).
[CrossRef] [PubMed]

Small (1)

H. Ko, S. Singamaneni, and V. V. Tsukruk, "Nanostructured Surfaces and Assemblies as SERS Media," Small 4, 1576-1599 (2008).
[CrossRef] [PubMed]

Other (12)

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time Domain Method; 2nd ed. (Artech, Boston, MA, 2000).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998).

R. K. Chang and T. E. Furtak, eds., Surface-Enhanced Raman Scattering (Plenum, New York, 1982).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York 1983).

H. C. Van de Hulst, Light scattering by small particles (John Wiley & Sons, New York, 1957).

M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University Press, New York, 1999).

K. Kneipp, M. Moskovits, H. Kneipp, Surface-Enhanced Raman Scattering: Physics and Applications, (Springer, Berlin, 2006).
[CrossRef]

L. A. Sweatlock, S. A. Maier, H. A. Atwater, J. J. Penninkhof, and A. Polman, "Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles," Phys. Rev. B 71, 235408-1-235408-7 (2005).
[CrossRef]

C. M. Dutta, T. A. Ali, D. W. Brandl, T. Park, and P. Nordlander, "Plasmonic properties of a metallic torus," J. Chem. Phys. 129, 084706-1-084706-9 (2008).
[CrossRef]

M. I. Mishchenko, J. W. Hovenier and L. D. Travis, eds., Light Scattering by Nonspherical Particles, (Academic Press, San Diego, 2000).

K. Li, M. I. Stockman, and D. J. Bergman, "Self-Similar Chain of Metal Nanospheres as an Efficient Nanolens," Phys. Rev. Lett. 91, 227402-1−227402-4 (2003).
[CrossRef]

M. B. Wabuyele, F. Yan, G. D. Griffin, and T. Vo-Dinh, "Hyperspectral surface-enhanced Raman imaging of labeled silver nanoparticles in single cells," Rev. Sci. Instrum. 76, 063710-1−063710-7 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Schematic of two metallic nanospheres (of diameter radii R1 and R2) with a spacing s between the two spheres. The direction of propagation of the optical EM field incident on the spheres was Y direction and the field was polarized along the axis of the spheres (X axis).

Fig. 2.
Fig. 2.

Intensity of the E-field as a function of the incident field, polarized along the axis of two 70 nm gold spheres forming a dimer, as a function of normalized simulation time cT. The E-field intensity stabilizes after around 5000 FDTD simulation steps (when cT ~5.0 µm) where c is the speed of light and T is the time during simulation out of a total simulation time of 12000 time steps employed in this simulation. The spacing between the two nanospheres was 5 nm and wavelength of the incident light for this plot was 600 nm.

Fig. 3.
Fig. 3.

(a) Spatial Distribution of the E-field as a function of the incident field (i. e. E-field enhancement), polarized along the axis of two 70 nm gold spheres forming a dimer. At the “hot spot”, the spacing between the two nanospheres was 5 nm. The E-field was determined at the normalized simulation time cT ~5.28 µm where c is the speed of light and T is the time during simulation out of a total simulation time of 12000 time steps employed in this simulation and (b) Horizontal cut of the E-field made along ~ Z=0 such that value of the E-field enhancement along the X axis (axis connecting the two spheres forming the dimers) is displayed.

Fig. 4.
Fig. 4.

Effect of the spacing s between two adjacent gold nanospheres forming a dimer, on the magnitude of the electric field as a ratio of the incident electric field, i. e. the electric field enhancement (E), as a function of wavelength of the incident field. Evaluations were carried out using FDTD simulations and Analytical Calculations using the multipole expansion method. Diameter D of the nanospheres was 20 nm.

Fig. 5.
Fig. 5.

Effect of spacing s between two silver nanospheres forming a dimer on the magnitude of the electric field as a ratio of the incident electric field, i. e. the electric field enhancement (E), as a function of wavelength of the incident field. Evaluations were carried out using FDTD simulations and Analytical Calculations using the multipole expansion method. Diameter D of the nanospheres was 20 nm.

Fig. 6.
Fig. 6.

Effect of spacing s between two metallic nanospheres forming a dimer on the magnitude of the SERS EM Enhancement Factor plotted on a logarithmic scale as a function of wavelength of the incident field i. e. Log10(E4): (a) Evaluations were carried out for gold nanosphere dimers using FDTD simulations and Analytical Calculations using the multipole expansion method and (b) Evaluations were carried out for silver nanosphere dimers using FDTD simulations and the multipole expansion method. The diameter D of the gold and silver nanospheres was 20 nm.

Fig. 7.
Fig. 7.

Effect of diameter D of two Gold nanospheres forming a dimer on magnitude of the electric field as a function of the incident electric field, i. e. the electric field enhancement, evaluated by employing FDTD simulations and analytical calculations using the multipole expansion method. The spacing s between the two nanospheres was 5 nm.

Fig. 8.
Fig. 8.

Effect of diameter D of two Gold nanospheres forming a dimer on the magnitude of the SERS EM Enhancement Factor plotted on a logarithmic scale as a function of wavelength of the incident field i. e. Log10 (E4) evaluated by employing FDTD simulations and analytical calculations using the multipole expansion method. The spacing s between the two nanospheres was 5 nm.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

EME=Eloc(ωi)Einc(ωi)2Eloc(ωS)Einc(ωS)2
ε(ω)=1+k=16Δεkakω2ibkω+ck
Δ t<1c1(Δx)2+1(Δy)2+1(Δz)2
ψp(i)=E0riPl(ui)
ψs(i)=n=1an(i)1rin+1Pn(ui)
ψin(i)=n=1bn(i)rinPn(ui)
ψ(r)=ψp(r)+ψs(1)(r1)+ψs(2)(r2)
E0Riδ1m+1Rim+1am(i)+n=1Qmn(ij)an(j)=Rimbm(i)
E0Riδ1m(m+1)Rim+1am(i)+n=1Rmn(ij)an(j)=m γi Rim bm(i)
Qmn(ij)cm11[1rjn+1Pn(uj)]ri=RiPm(ui)dui
Rmn(ij)cmRi11ri[1rjn+1Pn(uj)]ri=RiPm(ui)dui
1rjn+1Pn(uj)=(1)nk=0(k+n)!k!n!rikLk+n+1Pk(ui)
Qmn(ij)=(1)n(m+n)!m!n!RimLm+n+1

Metrics