Abstract

A photonic ultra-wideband (UWB) pulse generator based on relaxation oscillations of a semiconductor laser is proposed and experimentally demonstrated. We numerically simulate the modulation response of a direct modulation laser (DML) and show that due to the relaxation oscillations of the laser, the generated signals with complex shape in time domain match the Federal Communications Commission (FCC) mask in the frequency domain. Experimental results using a DML agree well with simulation predictions. Furthermore, we also experimentally demonstrate the generation of FCC compliant UWB signals by externally injecting a distributed feedback (DFB) laser.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Porcine, P. Research and W. Hirt, "Ultra-wideband radio technology: potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
    [CrossRef]
  2. R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo and J. Marti, "Ultra-wideband radio signals distribution in FTTH networks," IEEE Photon. Technol. Lett. 20, 945-947 (2008).
    [CrossRef]
  3. W. P. Lin and Y. C. Chen, "Design of a new optical impulse radio system for ultra-wideband wireless communications," IEEE J. Sel. Top. Quantum Electron. 12, 882-887 (2006).
    [CrossRef]
  4. J. Yao, F. Zeng and Q. Wang, "Photonic Generation of Ultrawideband Signals," J. Lightwave Technol. 25, 3219-3235 (2007).
    [CrossRef]
  5. C. Wang, F. Zeng and J. P. Yao, "All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
    [CrossRef]
  6. Q. Wang and J. Yao, "An electrically switchable optical ultrawideband pulse generator," J. Lightwave Technol. 25, 3626-3633 (2007).
    [CrossRef]
  7. Q. Wang, F. Zeng, S. Blais and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
    [CrossRef] [PubMed]
  8. H. Chen, M. Chen, C. Qiu, S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
    [CrossRef]
  9. J. Li, S. Fu, K. Xu, J. Wu, J. Lin, M. Tang and P. Shum, "Photonic ultrawideband monocycle pulse generation using a single electro-optic modulator," Opt. Lett. 33, 288-290 (2008).
    [CrossRef] [PubMed]
  10. J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu and P. Shum, "Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier," Opt. Lett. 32, 1223-1225 (2007).
    [CrossRef] [PubMed]
  11. W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
    [CrossRef]
  12. M. Abtahi, J. Magné, M. Mirshafiei, L. A Rusch and S. LaRochelle, "Generation of power-efficient FCC-compliant UWB waveforms using FBGs: analysis and experiment," J. Lightwave Technol. 26, 628-635 (2008).
    [CrossRef]
  13. Q. Wang, J. Yao, "UWB doublet generation using nonlinearly biased electro-optic intensity modulator," Electron. Lett. 42, 1304-1305 (2006).
    [CrossRef]
  14. T. Kawanishi, T. Sakamoto and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequency-shift-keying technique," IEEE Microwave Wirel. Compon. Lett. 15, 153-155 (2005).
    [CrossRef]
  15. V. Torres-Company, K. Prince and I. T. Monroy, "Fiber transmission and generation of ultrawideband pulses by direct current modulation of semiconductor lasers and chirp-to-intensity conversion," Opt. Lett. 33, 222-224 (2008).
    [CrossRef] [PubMed]
  16. H. Sheng; P. Orlik,; A. M. Haimovich, L. J. Cimini Jr., J. Zhang, "On the Spectral and Power Requirements for Ultra-Wideband Transmission," IEEE International Conference on Communications (ICC2003) 1, 738 - 742 (2003).
  17. G. P. Agrawal, Fiber optic communication systems (second edition) (John Wiley & Sons, Inc. 1997), pp. 110-122.

2008

2007

J. Dong, X. Zhang, J. Xu, D. Huang, S. Fu and P. Shum, "Ultrawideband monocycle generation using cross-phase modulation in a semiconductor optical amplifier," Opt. Lett. 32, 1223-1225 (2007).
[CrossRef] [PubMed]

J. Yao, F. Zeng and Q. Wang, "Photonic Generation of Ultrawideband Signals," J. Lightwave Technol. 25, 3219-3235 (2007).
[CrossRef]

Q. Wang and J. Yao, "An electrically switchable optical ultrawideband pulse generator," J. Lightwave Technol. 25, 3626-3633 (2007).
[CrossRef]

C. Wang, F. Zeng and J. P. Yao, "All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

H. Chen, M. Chen, C. Qiu, S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

2006

W. P. Lin and Y. C. Chen, "Design of a new optical impulse radio system for ultra-wideband wireless communications," IEEE J. Sel. Top. Quantum Electron. 12, 882-887 (2006).
[CrossRef]

Q. Wang, J. Yao, "UWB doublet generation using nonlinearly biased electro-optic intensity modulator," Electron. Lett. 42, 1304-1305 (2006).
[CrossRef]

Q. Wang, F. Zeng, S. Blais and J. Yao, "Optical ultrawideband monocycle pulse generation based on cross-gain modulation in a semiconductor optical amplifier," Opt. Lett. 31, 3083-3085 (2006).
[CrossRef] [PubMed]

2005

T. Kawanishi, T. Sakamoto and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequency-shift-keying technique," IEEE Microwave Wirel. Compon. Lett. 15, 153-155 (2005).
[CrossRef]

W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
[CrossRef]

2003

D. Porcine, P. Research and W. Hirt, "Ultra-wideband radio technology: potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

Abtahi, M.

Alves, T.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo and J. Marti, "Ultra-wideband radio signals distribution in FTTH networks," IEEE Photon. Technol. Lett. 20, 945-947 (2008).
[CrossRef]

Beltran, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo and J. Marti, "Ultra-wideband radio signals distribution in FTTH networks," IEEE Photon. Technol. Lett. 20, 945-947 (2008).
[CrossRef]

Blais, S.

Cartaxo, A.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo and J. Marti, "Ultra-wideband radio signals distribution in FTTH networks," IEEE Photon. Technol. Lett. 20, 945-947 (2008).
[CrossRef]

Chen, H.

H. Chen, M. Chen, C. Qiu, S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

Chen, J. Y.

W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
[CrossRef]

Chen, M.

H. Chen, M. Chen, C. Qiu, S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

Chen, Y. C.

W. P. Lin and Y. C. Chen, "Design of a new optical impulse radio system for ultra-wideband wireless communications," IEEE J. Sel. Top. Quantum Electron. 12, 882-887 (2006).
[CrossRef]

Dong, J.

Fu, S.

Hirt, W.

D. Porcine, P. Research and W. Hirt, "Ultra-wideband radio technology: potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

Huang, D.

Izutsu, M.

T. Kawanishi, T. Sakamoto and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequency-shift-keying technique," IEEE Microwave Wirel. Compon. Lett. 15, 153-155 (2005).
[CrossRef]

Kawanishi, T.

T. Kawanishi, T. Sakamoto and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequency-shift-keying technique," IEEE Microwave Wirel. Compon. Lett. 15, 153-155 (2005).
[CrossRef]

LaRochelle, S.

Li, J.

Lin, J.

Lin, W. P.

W. P. Lin and Y. C. Chen, "Design of a new optical impulse radio system for ultra-wideband wireless communications," IEEE J. Sel. Top. Quantum Electron. 12, 882-887 (2006).
[CrossRef]

W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
[CrossRef]

Llorente, R.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo and J. Marti, "Ultra-wideband radio signals distribution in FTTH networks," IEEE Photon. Technol. Lett. 20, 945-947 (2008).
[CrossRef]

Magné, J.

Marti, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo and J. Marti, "Ultra-wideband radio signals distribution in FTTH networks," IEEE Photon. Technol. Lett. 20, 945-947 (2008).
[CrossRef]

Mirshafiei, M.

Monroy, I. T.

Morant, M.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo and J. Marti, "Ultra-wideband radio signals distribution in FTTH networks," IEEE Photon. Technol. Lett. 20, 945-947 (2008).
[CrossRef]

Perez, J.

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo and J. Marti, "Ultra-wideband radio signals distribution in FTTH networks," IEEE Photon. Technol. Lett. 20, 945-947 (2008).
[CrossRef]

Porcine, D.

D. Porcine, P. Research and W. Hirt, "Ultra-wideband radio technology: potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

Prince, K.

Qiu, C.

H. Chen, M. Chen, C. Qiu, S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

Research, P.

D. Porcine, P. Research and W. Hirt, "Ultra-wideband radio technology: potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

Rusch, L. A

Sakamoto, T.

T. Kawanishi, T. Sakamoto and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequency-shift-keying technique," IEEE Microwave Wirel. Compon. Lett. 15, 153-155 (2005).
[CrossRef]

Shum, P.

Tang, M.

Torres-Company, V.

Wang, C.

C. Wang, F. Zeng and J. P. Yao, "All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

Wang, Q.

Wu, J.

Xie, S.

H. Chen, M. Chen, C. Qiu, S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

Xu, J.

Xu, K.

Yao, J.

Yao, J. P.

C. Wang, F. Zeng and J. P. Yao, "All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

Zeng, F.

Zhang, X.

Electron. Lett.

Q. Wang, J. Yao, "UWB doublet generation using nonlinearly biased electro-optic intensity modulator," Electron. Lett. 42, 1304-1305 (2006).
[CrossRef]

IEEE Commun. Mag.

D. Porcine, P. Research and W. Hirt, "Ultra-wideband radio technology: potential and challenges ahead," IEEE Commun. Mag. 41, 66-74 (2003).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

W. P. Lin and Y. C. Chen, "Design of a new optical impulse radio system for ultra-wideband wireless communications," IEEE J. Sel. Top. Quantum Electron. 12, 882-887 (2006).
[CrossRef]

IEEE Microwave Wirel. Compon. Lett.

T. Kawanishi, T. Sakamoto and M. Izutsu, "Ultra-wide-band radio signal generation using optical frequency-shift-keying technique," IEEE Microwave Wirel. Compon. Lett. 15, 153-155 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

C. Wang, F. Zeng and J. P. Yao, "All-fiber ultra wideband pulse generation based on spectral shaping and dispersion-induced frequency-to-time conversion," IEEE Photon. Technol. Lett. 19, 137-139 (2007).
[CrossRef]

H. Chen, M. Chen, C. Qiu, S. Xie, "A novel composite method for ultra-wideband doublet pulses generation," IEEE Photon. Technol. Lett. 19, 2021-2023 (2007).
[CrossRef]

W. P. Lin and J. Y. Chen, "Implementation of a new ultrawide-band impulse system," IEEE Photon. Technol. Lett. 17, 2418-2420 (2005).
[CrossRef]

R. Llorente, T. Alves, M. Morant, M. Beltran, J. Perez, A. Cartaxo and J. Marti, "Ultra-wideband radio signals distribution in FTTH networks," IEEE Photon. Technol. Lett. 20, 945-947 (2008).
[CrossRef]

J. Lightwave Technol.

Opt. Lett.

Other

H. Sheng; P. Orlik,; A. M. Haimovich, L. J. Cimini Jr., J. Zhang, "On the Spectral and Power Requirements for Ultra-Wideband Transmission," IEEE International Conference on Communications (ICC2003) 1, 738 - 742 (2003).

G. P. Agrawal, Fiber optic communication systems (second edition) (John Wiley & Sons, Inc. 1997), pp. 110-122.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Photonic UWB generator based on a DML. DML: direct modulation laser, PC: polarization controller, EDFA: Erbium-doped fiber amplifier, SMF: single mode fiber, PD: photodiode, ESA: electrical spectrum analyzer.

Fig. 2.
Fig. 2.

Simulation results in the case of using a modulation pattern sequence ‘0101 1111 1111 1111’. (a) the input modulation pattern with 10 mA current, (b) the change of carrier density with time, (c) the change of photon density with time.

Fig. 3.
Fig. 3.

The simulated output frequency spectra corresponding to the pulses in Fig. 2(d).

Fig. 4.
Fig. 4.

Bias characteristics of DML used in the experiment.

Fig. 5.
Fig. 5.

The measured output UWB signals in time domain and frequency domain as obtained by directly modulating the DML. (a) pulses in time domain, (b) frequency spectra of the signals in Fig. 5(a), as well as the FCC requirements mask.

Fig. 6.
Fig. 6.

(a). the photonic UWB generator by externally injecting a DFB laser. CW: continuous wave laser, MZM: Mach-Zehdner modulator, DFB: distributed feedback laser, OC: optical circulator, OSA: optical spectrum analyzer. (b) the measured optical spectra before and after the optical filter, as well as the transfer function of optical filter used in the experiment.

Fig. 7.
Fig. 7.

the measured pulses after the MZM when a 16-bit 12.5 Gbit/s sequence ‘1010 0000 0000 0000’ is applied.

Fig. 8.
Fig. 8.

The measured output UWB signals in time domain and frequency domain by externally injecting the DFB laser. (a) pulses in time domain, (b) frequency spectra of signals in Fig. 8(a), as well as the FCC requirements.

Tables (1)

Tables Icon

Table 1. The Parameters used in the simulation

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

dPdt=GP+RspPτp
dφdt=12α [GPτp]
dNdt=IqV NτcG P
I(t)=Ibias+Imodfmod(t)

Metrics