Abstract

A novel broadcasting scheme for WDM-PON based fiber access networks is proposed in this paper and downstream system experiments has been demonstrated. The broadcasting data is generated via subcarrier modulation technique. By using a delayed interferometer, the un-modulated continuous-wave carrier is separated and acts as the seeder for FP-LD injection locking and direct modulation, which is compatible with current WDM-PON infrastructures. In experiments, 2.5 Gb/s broadcasting data and 2.5 Gb/s point-to-point data are successfully integrated and transmitted in a typical WDM-PON structure with good performance.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Abrams, P. C. Becker, Y. Fujimoto, V. O’byrne, and D. Piehler, “FTTP deployments in the United States and Japan-equipment choices and service provider imperatives,” IEEE J. Lightwave Technol. 23, 236–246, (2005).
    [Crossref]
  2. S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network” IEEE J. Lightwave Technol. 222582–2591 (2004).
    [Crossref]
  3. J. Yu, Z. Jia, T. Wang, G. K. Chang, and G. Ellinas, “Demonstration of a novel WDM-PON access network compatible with ROF system to provide 2.5Gb/s per channel symmetric data services” Proc. OFC2007, OThM5, USA, (2007).
  4. W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 2460–2462 (2005).
    [Crossref]
  5. R. Lin, “Next generation PON in emerging networks,” in Proc. OFC2008, Paper OWH1, (2008).
  6. C. A. Chan, M. Attygalle, and A. Nirmalathas, “Generation and separation of closely separated dual baseband channels for provisioning of independent services in WDM-PON,” IEEE Photon. Technol. Lett. 19, 1215–1217 (2005).
    [Crossref]
  7. J.I. Kani, K. Iwatsuki, and T. Imai, “Optical multiplexing technologies for access-area applications,” IEEE J. Sel. Top. Quantum Electron. 12, 661–668 (2006).
    [Crossref]
  8. M. Tang, WD. Zhong, S. Fu, P. Shum, and Y. J. Wen, “A broadcasting-enabled WDM-PON architecture based on subcarrier modulation techniques” PhotonicsGlobal@Singapore, 2008.
  9. Z. Xu, Y. J. Wen, W. D. Zhong, C. J. Chae, X. Cheng, Y. Wang, and C. Lu, “High-speed WDM-PON using CW injection-locked Fabry- Pérot laser diodes,” Opt. Express 15, 2953–2962 (2007).
    [Crossref] [PubMed]

2007 (1)

2006 (1)

J.I. Kani, K. Iwatsuki, and T. Imai, “Optical multiplexing technologies for access-area applications,” IEEE J. Sel. Top. Quantum Electron. 12, 661–668 (2006).
[Crossref]

2005 (3)

M. Abrams, P. C. Becker, Y. Fujimoto, V. O’byrne, and D. Piehler, “FTTP deployments in the United States and Japan-equipment choices and service provider imperatives,” IEEE J. Lightwave Technol. 23, 236–246, (2005).
[Crossref]

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 2460–2462 (2005).
[Crossref]

C. A. Chan, M. Attygalle, and A. Nirmalathas, “Generation and separation of closely separated dual baseband channels for provisioning of independent services in WDM-PON,” IEEE Photon. Technol. Lett. 19, 1215–1217 (2005).
[Crossref]

2004 (1)

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network” IEEE J. Lightwave Technol. 222582–2591 (2004).
[Crossref]

Abrams, M.

M. Abrams, P. C. Becker, Y. Fujimoto, V. O’byrne, and D. Piehler, “FTTP deployments in the United States and Japan-equipment choices and service provider imperatives,” IEEE J. Lightwave Technol. 23, 236–246, (2005).
[Crossref]

Ahn, J. G.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network” IEEE J. Lightwave Technol. 222582–2591 (2004).
[Crossref]

Attygalle, M.

C. A. Chan, M. Attygalle, and A. Nirmalathas, “Generation and separation of closely separated dual baseband channels for provisioning of independent services in WDM-PON,” IEEE Photon. Technol. Lett. 19, 1215–1217 (2005).
[Crossref]

Becker, P. C.

M. Abrams, P. C. Becker, Y. Fujimoto, V. O’byrne, and D. Piehler, “FTTP deployments in the United States and Japan-equipment choices and service provider imperatives,” IEEE J. Lightwave Technol. 23, 236–246, (2005).
[Crossref]

Chae, C. J.

Chan, C. A.

C. A. Chan, M. Attygalle, and A. Nirmalathas, “Generation and separation of closely separated dual baseband channels for provisioning of independent services in WDM-PON,” IEEE Photon. Technol. Lett. 19, 1215–1217 (2005).
[Crossref]

Chang, G. K.

J. Yu, Z. Jia, T. Wang, G. K. Chang, and G. Ellinas, “Demonstration of a novel WDM-PON access network compatible with ROF system to provide 2.5Gb/s per channel symmetric data services” Proc. OFC2007, OThM5, USA, (2007).

Cheng, X.

Cho, S. H.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 2460–2462 (2005).
[Crossref]

Ellinas, G.

J. Yu, Z. Jia, T. Wang, G. K. Chang, and G. Ellinas, “Demonstration of a novel WDM-PON access network compatible with ROF system to provide 2.5Gb/s per channel symmetric data services” Proc. OFC2007, OThM5, USA, (2007).

Fu, S.

M. Tang, WD. Zhong, S. Fu, P. Shum, and Y. J. Wen, “A broadcasting-enabled WDM-PON architecture based on subcarrier modulation techniques” PhotonicsGlobal@Singapore, 2008.

Fujimoto, Y.

M. Abrams, P. C. Becker, Y. Fujimoto, V. O’byrne, and D. Piehler, “FTTP deployments in the United States and Japan-equipment choices and service provider imperatives,” IEEE J. Lightwave Technol. 23, 236–246, (2005).
[Crossref]

Imai, T.

J.I. Kani, K. Iwatsuki, and T. Imai, “Optical multiplexing technologies for access-area applications,” IEEE J. Sel. Top. Quantum Electron. 12, 661–668 (2006).
[Crossref]

Iwatsuki, K.

J.I. Kani, K. Iwatsuki, and T. Imai, “Optical multiplexing technologies for access-area applications,” IEEE J. Sel. Top. Quantum Electron. 12, 661–668 (2006).
[Crossref]

Jeong, G.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 2460–2462 (2005).
[Crossref]

Jeong, K. T.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network” IEEE J. Lightwave Technol. 222582–2591 (2004).
[Crossref]

Jia, Z.

J. Yu, Z. Jia, T. Wang, G. K. Chang, and G. Ellinas, “Demonstration of a novel WDM-PON access network compatible with ROF system to provide 2.5Gb/s per channel symmetric data services” Proc. OFC2007, OThM5, USA, (2007).

Kani, J.I.

J.I. Kani, K. Iwatsuki, and T. Imai, “Optical multiplexing technologies for access-area applications,” IEEE J. Sel. Top. Quantum Electron. 12, 661–668 (2006).
[Crossref]

Kim, B. W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 2460–2462 (2005).
[Crossref]

Kim, C.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 2460–2462 (2005).
[Crossref]

Lee, C. H.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network” IEEE J. Lightwave Technol. 222582–2591 (2004).
[Crossref]

Lee, J.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 2460–2462 (2005).
[Crossref]

Lee, W.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 2460–2462 (2005).
[Crossref]

Lin, R.

R. Lin, “Next generation PON in emerging networks,” in Proc. OFC2008, Paper OWH1, (2008).

Lu, C.

Nirmalathas, A.

C. A. Chan, M. Attygalle, and A. Nirmalathas, “Generation and separation of closely separated dual baseband channels for provisioning of independent services in WDM-PON,” IEEE Photon. Technol. Lett. 19, 1215–1217 (2005).
[Crossref]

O’byrne, V.

M. Abrams, P. C. Becker, Y. Fujimoto, V. O’byrne, and D. Piehler, “FTTP deployments in the United States and Japan-equipment choices and service provider imperatives,” IEEE J. Lightwave Technol. 23, 236–246, (2005).
[Crossref]

Park, H. J.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network” IEEE J. Lightwave Technol. 222582–2591 (2004).
[Crossref]

Park, M. Y.

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 2460–2462 (2005).
[Crossref]

Park, S. J.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network” IEEE J. Lightwave Technol. 222582–2591 (2004).
[Crossref]

Piehler, D.

M. Abrams, P. C. Becker, Y. Fujimoto, V. O’byrne, and D. Piehler, “FTTP deployments in the United States and Japan-equipment choices and service provider imperatives,” IEEE J. Lightwave Technol. 23, 236–246, (2005).
[Crossref]

Shum, P.

M. Tang, WD. Zhong, S. Fu, P. Shum, and Y. J. Wen, “A broadcasting-enabled WDM-PON architecture based on subcarrier modulation techniques” PhotonicsGlobal@Singapore, 2008.

Song, K. H.

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network” IEEE J. Lightwave Technol. 222582–2591 (2004).
[Crossref]

Tang, M.

M. Tang, WD. Zhong, S. Fu, P. Shum, and Y. J. Wen, “A broadcasting-enabled WDM-PON architecture based on subcarrier modulation techniques” PhotonicsGlobal@Singapore, 2008.

Wang, T.

J. Yu, Z. Jia, T. Wang, G. K. Chang, and G. Ellinas, “Demonstration of a novel WDM-PON access network compatible with ROF system to provide 2.5Gb/s per channel symmetric data services” Proc. OFC2007, OThM5, USA, (2007).

Wang, Y.

Wen, Y. J.

Z. Xu, Y. J. Wen, W. D. Zhong, C. J. Chae, X. Cheng, Y. Wang, and C. Lu, “High-speed WDM-PON using CW injection-locked Fabry- Pérot laser diodes,” Opt. Express 15, 2953–2962 (2007).
[Crossref] [PubMed]

M. Tang, WD. Zhong, S. Fu, P. Shum, and Y. J. Wen, “A broadcasting-enabled WDM-PON architecture based on subcarrier modulation techniques” PhotonicsGlobal@Singapore, 2008.

Xu, Z.

Yu, J.

J. Yu, Z. Jia, T. Wang, G. K. Chang, and G. Ellinas, “Demonstration of a novel WDM-PON access network compatible with ROF system to provide 2.5Gb/s per channel symmetric data services” Proc. OFC2007, OThM5, USA, (2007).

Zhong, W. D.

Zhong, WD.

M. Tang, WD. Zhong, S. Fu, P. Shum, and Y. J. Wen, “A broadcasting-enabled WDM-PON architecture based on subcarrier modulation techniques” PhotonicsGlobal@Singapore, 2008.

IEEE J. Lightwave Technol. (2)

M. Abrams, P. C. Becker, Y. Fujimoto, V. O’byrne, and D. Piehler, “FTTP deployments in the United States and Japan-equipment choices and service provider imperatives,” IEEE J. Lightwave Technol. 23, 236–246, (2005).
[Crossref]

S. J. Park, C. H. Lee, K. T. Jeong, H. J. Park, J. G. Ahn, and K. H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network” IEEE J. Lightwave Technol. 222582–2591 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J.I. Kani, K. Iwatsuki, and T. Imai, “Optical multiplexing technologies for access-area applications,” IEEE J. Sel. Top. Quantum Electron. 12, 661–668 (2006).
[Crossref]

IEEE Photon. Technol. Lett. (2)

C. A. Chan, M. Attygalle, and A. Nirmalathas, “Generation and separation of closely separated dual baseband channels for provisioning of independent services in WDM-PON,” IEEE Photon. Technol. Lett. 19, 1215–1217 (2005).
[Crossref]

W. Lee, M. Y. Park, S. H. Cho, J. Lee, C. Kim, G. Jeong, and B. W. Kim, “Bidirectional WDM-PON based on gain-saturated reflective semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 2460–2462 (2005).
[Crossref]

Opt. Express (1)

Other (3)

M. Tang, WD. Zhong, S. Fu, P. Shum, and Y. J. Wen, “A broadcasting-enabled WDM-PON architecture based on subcarrier modulation techniques” PhotonicsGlobal@Singapore, 2008.

R. Lin, “Next generation PON in emerging networks,” in Proc. OFC2008, Paper OWH1, (2008).

J. Yu, Z. Jia, T. Wang, G. K. Chang, and G. Ellinas, “Demonstration of a novel WDM-PON access network compatible with ROF system to provide 2.5Gb/s per channel symmetric data services” Proc. OFC2007, OThM5, USA, (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig.1.
Fig.1.

Proposed systematic configuration of simultaneous generation of broadcasting and P2P data for WDM-PON structure.

Fig. 2.
Fig. 2.

Experimental setup of proposed simultaneous generation of broadcasting and P2P data for WDM-PON. EA: electrical amplifier.

Fig. 3.
Fig. 3.

Transmission spectrum of 43 GHz MZI.

Fig. 4.
Fig. 4.

Measured optical spectrum in experiments, resolution 0.01 nm: (a). Subcarrier modulated signal after MZM; (b). Separated central carrier without data from the lower port of MZI; (c). Separated subcarrier data with suppressed carrier from upper port of MZI.

Fig. 5.
Fig. 5.

Combined broadcasting and P2P data output from optical coupler.

Fig. 6.
Fig. 6.

Experimental receiving part in ONU.

Fig. 7.
Fig. 7.

BER measurements for broadcasting and P2P data before and after 25 km fiber transmission.

Metrics