Abstract

A design for an ultra-high Q photonic crystal nanocavity engineered to interact with nitrogen-vacancy (NV) centers located near the surface of a single crystal diamond sample is presented. The structure is based upon a nanowire photonic crystal geometry, and consists of a patterned high refractive index thin film, such as gallium phosphide (GaP), supported by a diamond substrate. The nanocavity supports a mode with quality factor Q>1.5×106 and mode volume V<0.52(λ/n GaP)3, and promises to allow Purcell enhanced collection of spontaneous emission from an NV located more than 50 nm below the diamond surface. The nanowire photonic crystal waveguide can be used to efficiently couple light into and out of the cavity, or as an efficient broadband collector of NV phonon sideband emission. The proposed structures can be fabricated using existing materials and processing techniques.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
    [CrossRef]
  2. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290 (2000).
    [CrossRef] [PubMed]
  3. A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061 802 (2001).
    [CrossRef]
  4. C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent Population Trapping of Single Spins in Diamond under Optical Excitation,” Phys. Rev. Lett. 97, 247 401 (2006).
    [CrossRef]
  5. F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of Coherent Oscillations in a Single Electron Spin,” Phys. Rev. Lett. 92, 076 401 (2004).
    [CrossRef]
  6. M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond,” Science 316, 1312–1316 (2007).
    [CrossRef]
  7. L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond,” Science 314, 281–285 (2006).
    [CrossRef] [PubMed]
  8. L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-Tolerant Quantum Communication Based on Solid-State Photon Emitters,” Phys. Rev. Lett. 96, 070 504 (2006).
    [CrossRef]
  9. S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” arXiv:0901.3092v2 [quant-ph] (2009).
  10. C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Express 16, 6240–6250 (2008).
    [CrossRef] [PubMed]
  11. A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. OBrien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013 007 (2009).
    [CrossRef]
  12. O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1824 (1999).
    [CrossRef] [PubMed]
  13. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
    [CrossRef] [PubMed]
  14. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber based measurement of an ultra-small volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081 306(R) (2004).
    [CrossRef]
  15. B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials 4, 207–210 (2005).
    [CrossRef]
  16. Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asanoa, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17 206–17 213 (2007).
    [CrossRef]
  17. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
    [CrossRef] [PubMed]
  18. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Faelt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 455, 896–899 (2007).
    [CrossRef]
  19. D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
    [CrossRef] [PubMed]
  20. Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6, 2075–2079 (2006).
    [CrossRef] [PubMed]
  21. P. E. Barclay, O. Painter, C. Santori, K.-M. Fu, and R. Beausoleil, “Coherent interference effects in a nano-assembled optical cavity-QED system,” Opt. Express 19, 8081 (2009).
    [CrossRef]
  22. S. Schietinger, T. Schroder, and O. Benson, “One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator,” Nano Lett. 8, 3911–3915 (2008).
    [CrossRef] [PubMed]
  23. C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett. 90, 081 110 (2007).
    [CrossRef]
  24. C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimenstional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201 112 (2007).
  25. Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77, 033 201 (2008).
    [CrossRef]
  26. P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark Shift Control of Single Optical Centers in Diamond,” Phys. Rev. Lett. 97, 083 002 (2006).
    [CrossRef]
  27. S. Tomljenovic-Hanic, M. Steel, C. de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006).
    [CrossRef] [PubMed]
  28. C. Kreuzer, J. Riedrich-Mller, E. Neu, and C. Becher, “Design of Photonic Crystal Microcavities in Diamond Films,” Opt. Express 16, 1632–1644 (2008).
    [CrossRef] [PubMed]
  29. B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, I. W. Robert, A. Taylor, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of Ultrathin Single-Crystal Diamond Membranes,” Adv. Mater. 20, 4793–4798 (2008).
    [CrossRef]
  30. K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide,” Appl. Phys. Lett. 93, 234 107 (2008).
    [CrossRef]
  31. A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12 084–12 089 (2008).
  32. I. Bayn and J. Salzman, “Ultra high-Q photonic crystal nanocavity design: The effect of a low-ε slab material,” Opt. Express 16, 4972–4980 (2008).
    [CrossRef] [PubMed]
  33. K. Rivoire, A. Faraon, and J. Vučković, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063 103 (2008).
    [CrossRef]
  34. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
    [CrossRef]
  35. P. Lalanne, “Electromagnetic Analysis of Photonic Crystal Waveguides Operating Above the Light Cone,” IEEE J. Quantum Electron. 38, 800–804 (2002).
    [CrossRef]
  36. K. Srinivasan and O. Painter, “Momentum Space Design of High-Q Photonic Crystal Nanocavities in Two-Dimensional Slab Waveguides,” Opt. Express 10, 670–684 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670
    [PubMed]
  37. O. Painter and K. Srinivasan, “Localized defect states in two-dimensional photonic crystal slab waveguides: A simple model based upon symmetry analysis,” Phys. Rev. B 68, 035 110 (2003).
    [CrossRef]
  38. All FDTD simulations used the MEEP software package. http://ab-initio.mit.edu/wiki/index.php/Meep
  39. P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
    [CrossRef]
  40. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, NY, 1983).
  41. E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455 (2006).
    [CrossRef]
  42. M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q Nanocavity with 1D Photonic Gap,” Opt. Express 16, 11 095 (2008).
    [CrossRef]
  43. J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-Bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
    [CrossRef]
  44. A. Jugessur, P. Pottier, and R. De La Rue, “One-dimensional periodic photonic crystal microcavity filters with transition mode-matching features, embedded in ridge waveguides,” Electron. Lett. 39, 367–369 (2003).
    [CrossRef]
  45. M. W. McCutcheon and M. Lončar, “Design of an ultrahigh Quality factor silicon nitride photonic crystal nanocavity for coupling to diamond nanocrystals,” Opt. Express 16, 19 136 (2008).
    [CrossRef]
  46. J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
    [CrossRef] [PubMed]
  47. O. Painter, K. Srinivasan, and P. E. Barclay, “Wannier-like equation for the resonant cavity modes of locally perturbed photonic crystals,” Phys. Rev. B 68, 035 214 (2003).
    [CrossRef]
  48. P. E. Barclay, K. Srinivasan, and O. Painter, “Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities,” J. Opt. Soc. Amer. B 20, 2274–2284 (2003).
    [CrossRef]
  49. D. Morie and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85, 1101–1103 (2004).
    [CrossRef]
  50. P. Lalanne, S. Mias, and J. P. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12, 458–467 (2004).
    [CrossRef] [PubMed]
  51. C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express 13, 245–255 (2005).
    [CrossRef] [PubMed]
  52. N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104 303 (2006).
    [CrossRef]
  53. H. J. Kimble, “Strong Interactions of Single Atoms and Photons in Cavity QED,” Phys. Scr. T76, 127–137 (1998).
    [CrossRef]
  54. C. Santori, P. E. Barclay, K.-M. C. Fu, and R. G. Beausoleil, “Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing,” Phys. Rev. B 79, 125 313 (2009).
    [CrossRef]
  55. V. S. C. Manga Rao and S. Hughes, “Single Quantum Dot Spontaneous Emission in a Finite-Size Photonic Crystal Waveguide: Proposal for an Efficient “On Chip” Single Photon Gun,” Phys. Rev. Lett. 99, 193 901 (2007).
  56. E. Yablonovitch, D. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
    [CrossRef]
  57. P. E. Barclay, C. Santori, K.-M. Fu, and R. G. Beausoleil, “Microcavities for cavity-QED in single crystal diamond,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference Proceedings p. IMF3 (2009).
    [PubMed]
  58. G. Davies, S. C. Lawson, A. T. Collins, A. Mainwood, and S. J. Sharp, “Vacancy-related centers in diamond,” Phys. Rev. B 46, 13 157–13 170 (1992).
    [CrossRef]
  59. J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Applied Physics Letters 87, 261 909 (2005).
    [CrossRef]
  60. F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, “Creating diamond color centers for quantum optical applications,” Diamond and Related Materials 16, 1887–1895 (2007).
    [CrossRef]

2009 (4)

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. OBrien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013 007 (2009).
[CrossRef]

P. E. Barclay, O. Painter, C. Santori, K.-M. Fu, and R. Beausoleil, “Coherent interference effects in a nano-assembled optical cavity-QED system,” Opt. Express 19, 8081 (2009).
[CrossRef]

C. Santori, P. E. Barclay, K.-M. C. Fu, and R. G. Beausoleil, “Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing,” Phys. Rev. B 79, 125 313 (2009).
[CrossRef]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
[CrossRef] [PubMed]

2008 (11)

C. Kreuzer, J. Riedrich-Mller, E. Neu, and C. Becher, “Design of Photonic Crystal Microcavities in Diamond Films,” Opt. Express 16, 1632–1644 (2008).
[CrossRef] [PubMed]

I. Bayn and J. Salzman, “Ultra high-Q photonic crystal nanocavity design: The effect of a low-ε slab material,” Opt. Express 16, 4972–4980 (2008).
[CrossRef] [PubMed]

C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Express 16, 6240–6250 (2008).
[CrossRef] [PubMed]

M. W. McCutcheon and M. Lončar, “Design of an ultrahigh Quality factor silicon nitride photonic crystal nanocavity for coupling to diamond nanocrystals,” Opt. Express 16, 19 136 (2008).
[CrossRef]

S. Schietinger, T. Schroder, and O. Benson, “One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator,” Nano Lett. 8, 3911–3915 (2008).
[CrossRef] [PubMed]

Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77, 033 201 (2008).
[CrossRef]

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, I. W. Robert, A. Taylor, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of Ultrathin Single-Crystal Diamond Membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide,” Appl. Phys. Lett. 93, 234 107 (2008).
[CrossRef]

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12 084–12 089 (2008).

K. Rivoire, A. Faraon, and J. Vučković, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063 103 (2008).
[CrossRef]

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q Nanocavity with 1D Photonic Gap,” Opt. Express 16, 11 095 (2008).
[CrossRef]

2007 (8)

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett. 90, 081 110 (2007).
[CrossRef]

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimenstional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201 112 (2007).

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asanoa, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17 206–17 213 (2007).
[CrossRef]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Faelt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 455, 896–899 (2007).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

V. S. C. Manga Rao and S. Hughes, “Single Quantum Dot Spontaneous Emission in a Finite-Size Photonic Crystal Waveguide: Proposal for an Efficient “On Chip” Single Photon Gun,” Phys. Rev. Lett. 99, 193 901 (2007).

F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, “Creating diamond color centers for quantum optical applications,” Diamond and Related Materials 16, 1887–1895 (2007).
[CrossRef]

2006 (9)

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104 303 (2006).
[CrossRef]

S. Tomljenovic-Hanic, M. Steel, C. de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006).
[CrossRef] [PubMed]

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6, 2075–2079 (2006).
[CrossRef] [PubMed]

P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark Shift Control of Single Optical Centers in Diamond,” Phys. Rev. Lett. 97, 083 002 (2006).
[CrossRef]

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond,” Science 314, 281–285 (2006).
[CrossRef] [PubMed]

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-Tolerant Quantum Communication Based on Solid-State Photon Emitters,” Phys. Rev. Lett. 96, 070 504 (2006).
[CrossRef]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent Population Trapping of Single Spins in Diamond under Optical Excitation,” Phys. Rev. Lett. 97, 247 401 (2006).
[CrossRef]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455 (2006).
[CrossRef]

2005 (3)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials 4, 207–210 (2005).
[CrossRef]

C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express 13, 245–255 (2005).
[CrossRef] [PubMed]

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Applied Physics Letters 87, 261 909 (2005).
[CrossRef]

2004 (5)

P. Lalanne, S. Mias, and J. P. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12, 458–467 (2004).
[CrossRef] [PubMed]

D. Morie and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85, 1101–1103 (2004).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber based measurement of an ultra-small volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081 306(R) (2004).
[CrossRef]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of Coherent Oscillations in a Single Electron Spin,” Phys. Rev. Lett. 92, 076 401 (2004).
[CrossRef]

2003 (5)

O. Painter and K. Srinivasan, “Localized defect states in two-dimensional photonic crystal slab waveguides: A simple model based upon symmetry analysis,” Phys. Rev. B 68, 035 110 (2003).
[CrossRef]

A. Jugessur, P. Pottier, and R. De La Rue, “One-dimensional periodic photonic crystal microcavity filters with transition mode-matching features, embedded in ridge waveguides,” Electron. Lett. 39, 367–369 (2003).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

O. Painter, K. Srinivasan, and P. E. Barclay, “Wannier-like equation for the resonant cavity modes of locally perturbed photonic crystals,” Phys. Rev. B 68, 035 214 (2003).
[CrossRef]

P. E. Barclay, K. Srinivasan, and O. Painter, “Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities,” J. Opt. Soc. Amer. B 20, 2274–2284 (2003).
[CrossRef]

2002 (2)

2001 (1)

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061 802 (2001).
[CrossRef]

2000 (2)

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290 (2000).
[CrossRef] [PubMed]

1999 (1)

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

1998 (1)

H. J. Kimble, “Strong Interactions of Single Atoms and Photons in Cavity QED,” Phys. Scr. T76, 127–137 (1998).
[CrossRef]

1997 (2)

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-Bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

1992 (1)

G. Davies, S. C. Lawson, A. T. Collins, A. Mainwood, and S. J. Sharp, “Vacancy-related centers in diamond,” Phys. Rev. B 46, 13 157–13 170 (1992).
[CrossRef]

1990 (1)

E. Yablonovitch, D. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[CrossRef]

Aharonovich, I.

K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide,” Appl. Phys. Lett. 93, 234 107 (2008).
[CrossRef]

Akahane, Y.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Asano, T.

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Asanoa, T.

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asanoa, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17 206–17 213 (2007).
[CrossRef]

Atature, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Faelt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 455, 896–899 (2007).
[CrossRef]

Awschalom, D. D.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimenstional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201 112 (2007).

Baba, T.

D. Morie and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85, 1101–1103 (2004).
[CrossRef]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Faelt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 455, 896–899 (2007).
[CrossRef]

Barclay, P. E.

P. E. Barclay, O. Painter, C. Santori, K.-M. Fu, and R. Beausoleil, “Coherent interference effects in a nano-assembled optical cavity-QED system,” Opt. Express 19, 8081 (2009).
[CrossRef]

C. Santori, P. E. Barclay, K.-M. C. Fu, and R. G. Beausoleil, “Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing,” Phys. Rev. B 79, 125 313 (2009).
[CrossRef]

K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide,” Appl. Phys. Lett. 93, 234 107 (2008).
[CrossRef]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber based measurement of an ultra-small volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081 306(R) (2004).
[CrossRef]

O. Painter, K. Srinivasan, and P. E. Barclay, “Wannier-like equation for the resonant cavity modes of locally perturbed photonic crystals,” Phys. Rev. B 68, 035 214 (2003).
[CrossRef]

P. E. Barclay, K. Srinivasan, and O. Painter, “Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities,” J. Opt. Soc. Amer. B 20, 2274–2284 (2003).
[CrossRef]

P. E. Barclay, C. Santori, K.-M. Fu, and R. G. Beausoleil, “Microcavities for cavity-QED in single crystal diamond,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference Proceedings p. IMF3 (2009).
[PubMed]

Bayn, I.

Beausoleil, R.

P. E. Barclay, O. Painter, C. Santori, K.-M. Fu, and R. Beausoleil, “Coherent interference effects in a nano-assembled optical cavity-QED system,” Opt. Express 19, 8081 (2009).
[CrossRef]

Beausoleil, R. G.

C. Santori, P. E. Barclay, K.-M. C. Fu, and R. G. Beausoleil, “Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing,” Phys. Rev. B 79, 125 313 (2009).
[CrossRef]

K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide,” Appl. Phys. Lett. 93, 234 107 (2008).
[CrossRef]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent Population Trapping of Single Spins in Diamond under Optical Excitation,” Phys. Rev. Lett. 97, 247 401 (2006).
[CrossRef]

P. E. Barclay, C. Santori, K.-M. Fu, and R. G. Beausoleil, “Microcavities for cavity-QED in single crystal diamond,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference Proceedings p. IMF3 (2009).
[PubMed]

Becher, C.

Benjamin, S. C.

S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” arXiv:0901.3092v2 [quant-ph] (2009).

Benson, O.

S. Schietinger, T. Schroder, and O. Benson, “One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator,” Nano Lett. 8, 3911–3915 (2008).
[CrossRef] [PubMed]

Beveratos, A.

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061 802 (2001).
[CrossRef]

Borczyskowski, C. v.

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
[CrossRef]

Borselli, M.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber based measurement of an ultra-small volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081 306(R) (2004).
[CrossRef]

Brouri, R.

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061 802 (2001).
[CrossRef]

Burchard, B.

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Applied Physics Letters 87, 261 909 (2005).
[CrossRef]

Butler, J. E.

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett. 90, 081 110 (2007).
[CrossRef]

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimenstional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201 112 (2007).

Camacho, R.

Chan, J.

Charvolin, T.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

Childress, L.

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond,” Science 314, 281–285 (2006).
[CrossRef] [PubMed]

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-Tolerant Quantum Communication Based on Solid-State Photon Emitters,” Phys. Rev. Lett. 96, 070 504 (2006).
[CrossRef]

Choi, Y.-S.

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett. 90, 081 110 (2007).
[CrossRef]

Collins, A. T.

G. Davies, S. C. Lawson, A. T. Collins, A. Mainwood, and S. J. Sharp, “Vacancy-related centers in diamond,” Phys. Rev. B 46, 13 157–13 170 (1992).
[CrossRef]

Cook, A. K.

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6, 2075–2079 (2006).
[CrossRef] [PubMed]

Dapkus, P. D.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

Davies, G.

G. Davies, S. C. Lawson, A. T. Collins, A. Mainwood, and S. J. Sharp, “Vacancy-related centers in diamond,” Phys. Rev. B 46, 13 157–13 170 (1992).
[CrossRef]

De La Rue, R.

A. Jugessur, P. Pottier, and R. De La Rue, “One-dimensional periodic photonic crystal microcavity filters with transition mode-matching features, embedded in ridge waveguides,” Electron. Lett. 39, 367–369 (2003).
[CrossRef]

de Sterke, C.

Deppe, D.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Domhan, M.

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Applied Physics Letters 87, 261 909 (2005).
[CrossRef]

Dräbenstedt, A.

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
[CrossRef]

Draganski, M.

F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, “Creating diamond color centers for quantum optical applications,” Diamond and Related Materials 16, 1887–1895 (2007).
[CrossRef]

Eichenfield, M.

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Englund, D.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

Faelt, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Faelt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 455, 896–899 (2007).
[CrossRef]

Fairchild, B. A.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, I. W. Robert, A. Taylor, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of Ultrathin Single-Crystal Diamond Membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Fan, S.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-Bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Faraon, A.

K. Rivoire, A. Faraon, and J. Vučković, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063 103 (2008).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

Fattal, D.

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent Population Trapping of Single Spins in Diamond under Optical Excitation,” Phys. Rev. Lett. 97, 247 401 (2006).
[CrossRef]

Ferrera, J.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-Bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Feygelson, T.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimenstional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201 112 (2007).

Fleury, L.

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
[CrossRef]

Florez, L. T.

E. Yablonovitch, D. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[CrossRef]

Foresi, J. S.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-Bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Fu, K.-M.

P. E. Barclay, O. Painter, C. Santori, K.-M. Fu, and R. Beausoleil, “Coherent interference effects in a nano-assembled optical cavity-QED system,” Opt. Express 19, 8081 (2009).
[CrossRef]

P. E. Barclay, C. Santori, K.-M. Fu, and R. G. Beausoleil, “Microcavities for cavity-QED in single crystal diamond,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference Proceedings p. IMF3 (2009).
[PubMed]

Fu, K.-M. C.

C. Santori, P. E. Barclay, K.-M. C. Fu, and R. G. Beausoleil, “Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing,” Phys. Rev. B 79, 125 313 (2009).
[CrossRef]

K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide,” Appl. Phys. Lett. 93, 234 107 (2008).
[CrossRef]

Fushman, I.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

Gacoin, T.

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061 802 (2001).
[CrossRef]

Gaebel, T.

P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark Shift Control of Single Optical Centers in Diamond,” Phys. Rev. Lett. 97, 083 002 (2006).
[CrossRef]

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Applied Physics Letters 87, 261 909 (2005).
[CrossRef]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of Coherent Oscillations in a Single Electron Spin,” Phys. Rev. Lett. 92, 076 401 (2004).
[CrossRef]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Faelt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 455, 896–899 (2007).
[CrossRef]

Gibbs, H.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Gibson, B. C.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, I. W. Robert, A. Taylor, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of Ultrathin Single-Crystal Diamond Membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Gmitter, T. J.

E. Yablonovitch, D. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[CrossRef]

Grangier, P.

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061 802 (2001).
[CrossRef]

Greentree, A.

F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, “Creating diamond color centers for quantum optical applications,” Diamond and Related Materials 16, 1887–1895 (2007).
[CrossRef]

Greentree, A. D.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, I. W. Robert, A. Taylor, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of Ultrathin Single-Crystal Diamond Membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Express 16, 6240–6250 (2008).
[CrossRef] [PubMed]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent Population Trapping of Single Spins in Diamond under Optical Excitation,” Phys. Rev. Lett. 97, 247 401 (2006).
[CrossRef]

P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark Shift Control of Single Optical Centers in Diamond,” Phys. Rev. Lett. 97, 083 002 (2006).
[CrossRef]

Gruber, A.

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of Coherent Oscillations in a Single Electron Spin,” Phys. Rev. Lett. 92, 076 401 (2004).
[CrossRef]

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
[CrossRef]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Faelt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 455, 896–899 (2007).
[CrossRef]

Gurudev Dutt, M. V.

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond,” Science 314, 281–285 (2006).
[CrossRef] [PubMed]

Hadji, E.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

Hagino, H.

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asanoa, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17 206–17 213 (2007).
[CrossRef]

Hanson, R.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimenstional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201 112 (2007).

Harbison, J. P.

E. Yablonovitch, D. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[CrossRef]

Harrison, J. P.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. OBrien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013 007 (2009).
[CrossRef]

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104 303 (2006).
[CrossRef]

Hemmer, P.

P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark Shift Control of Single Optical Centers in Diamond,” Phys. Rev. Lett. 97, 083 002 (2006).
[CrossRef]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent Population Trapping of Single Spins in Diamond under Optical Excitation,” Phys. Rev. Lett. 97, 247 401 (2006).
[CrossRef]

Hemmer, P. R.

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond,” Science 314, 281–285 (2006).
[CrossRef] [PubMed]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Faelt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 455, 896–899 (2007).
[CrossRef]

Hollenberg, L. C. L.

C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Express 16, 6240–6250 (2008).
[CrossRef] [PubMed]

P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark Shift Control of Single Optical Centers in Diamond,” Phys. Rev. Lett. 97, 083 002 (2006).
[CrossRef]

Holm, A. M.

K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide,” Appl. Phys. Lett. 93, 234 107 (2008).
[CrossRef]

Hu, C. Y.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. OBrien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013 007 (2009).
[CrossRef]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Faelt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 455, 896–899 (2007).
[CrossRef]

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett. 90, 081 110 (2007).
[CrossRef]

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimenstional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201 112 (2007).

Hughes, S.

V. S. C. Manga Rao and S. Hughes, “Single Quantum Dot Spontaneous Emission in a Finite-Size Photonic Crystal Waveguide: Proposal for an Efficient “On Chip” Single Photon Gun,” Phys. Rev. Lett. 99, 193 901 (2007).

Hugonin, J.

Hugonin, J. P.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

P. Lalanne, S. Mias, and J. P. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12, 458–467 (2004).
[CrossRef] [PubMed]

Huntington, S.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, I. W. Robert, A. Taylor, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of Ultrathin Single-Crystal Diamond Membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Hwang, D.

E. Yablonovitch, D. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[CrossRef]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Faelt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 455, 896–899 (2007).
[CrossRef]

Ippen, E. P.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-Bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Istrate, E.

E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455 (2006).
[CrossRef]

Jaksch, D.

F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, “Creating diamond color centers for quantum optical applications,” Diamond and Related Materials 16, 1887–1895 (2007).
[CrossRef]

Jamieson, D.

F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, “Creating diamond color centers for quantum optical applications,” Diamond and Related Materials 16, 1887–1895 (2007).
[CrossRef]

Jamieson, D. N.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, I. W. Robert, A. Taylor, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of Ultrathin Single-Crystal Diamond Membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Jelezko, F.

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent Population Trapping of Single Spins in Diamond under Optical Excitation,” Phys. Rev. Lett. 97, 247 401 (2006).
[CrossRef]

P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark Shift Control of Single Optical Centers in Diamond,” Phys. Rev. Lett. 97, 083 002 (2006).
[CrossRef]

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond,” Science 314, 281–285 (2006).
[CrossRef] [PubMed]

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Applied Physics Letters 87, 261 909 (2005).
[CrossRef]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of Coherent Oscillations in a Single Electron Spin,” Phys. Rev. Lett. 92, 076 401 (2004).
[CrossRef]

Jiang, L.

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-Bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Johnson, N. P.

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12 084–12 089 (2008).

Johnson, S. G.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

Jugessur, A.

A. Jugessur, P. Pottier, and R. De La Rue, “One-dimensional periodic photonic crystal microcavity filters with transition mode-matching features, embedded in ridge waveguides,” Electron. Lett. 39, 367–369 (2003).
[CrossRef]

Khan, M.

P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark Shift Control of Single Optical Centers in Diamond,” Phys. Rev. Lett. 97, 083 002 (2006).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Kim, I.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

Kimble, H. J.

H. J. Kimble, “Strong Interactions of Single Atoms and Photons in Cavity QED,” Phys. Scr. T76, 127–137 (1998).
[CrossRef]

Kimerling, L. C.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-Bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Kreuzer, C.

Kuramochi, E.

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q Nanocavity with 1D Photonic Gap,” Opt. Express 16, 11 095 (2008).
[CrossRef]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290 (2000).
[CrossRef] [PubMed]

Lalanne, P.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express 13, 245–255 (2005).
[CrossRef] [PubMed]

P. Lalanne, S. Mias, and J. P. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12, 458–467 (2004).
[CrossRef] [PubMed]

P. Lalanne, “Electromagnetic Analysis of Photonic Crystal Waveguides Operating Above the Light Cone,” IEEE J. Quantum Electron. 38, 800–804 (2002).
[CrossRef]

Lawson, S. C.

G. Davies, S. C. Lawson, A. T. Collins, A. Mainwood, and S. J. Sharp, “Vacancy-related centers in diamond,” Phys. Rev. B 46, 13 157–13 170 (1992).
[CrossRef]

Lecamp, G.

Lee, J. C.

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett. 90, 081 110 (2007).
[CrossRef]

Lee, R. K.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

Loncar, M.

M. W. McCutcheon and M. Lončar, “Design of an ultrahigh Quality factor silicon nitride photonic crystal nanocavity for coupling to diamond nanocrystals,” Opt. Express 16, 19 136 (2008).
[CrossRef]

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, NY, 1983).

Lovett, B. W.

S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” arXiv:0901.3092v2 [quant-ph] (2009).

Lukin, M. D.

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-Tolerant Quantum Communication Based on Solid-State Photon Emitters,” Phys. Rev. Lett. 96, 070 504 (2006).
[CrossRef]

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond,” Science 314, 281–285 (2006).
[CrossRef] [PubMed]

Mainwood, A.

G. Davies, S. C. Lawson, A. T. Collins, A. Mainwood, and S. J. Sharp, “Vacancy-related centers in diamond,” Phys. Rev. B 46, 13 157–13 170 (1992).
[CrossRef]

Manga Rao, V. S. C.

V. S. C. Manga Rao and S. Hughes, “Single Quantum Dot Spontaneous Emission in a Finite-Size Photonic Crystal Waveguide: Proposal for an Efficient “On Chip” Single Photon Gun,” Phys. Rev. Lett. 99, 193 901 (2007).

Manson, N. B.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104 303 (2006).
[CrossRef]

Marseglia, L.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. OBrien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013 007 (2009).
[CrossRef]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290 (2000).
[CrossRef] [PubMed]

Maze, J.

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

McCutcheon, M. W.

M. W. McCutcheon and M. Lončar, “Design of an ultrahigh Quality factor silicon nitride photonic crystal nanocavity for coupling to diamond nanocrystals,” Opt. Express 16, 19 136 (2008).
[CrossRef]

Meijer, J.

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Applied Physics Letters 87, 261 909 (2005).
[CrossRef]

Meyer, N.

K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide,” Appl. Phys. Lett. 93, 234 107 (2008).
[CrossRef]

Mias, S.

Morie, D.

D. Morie and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85, 1101–1103 (2004).
[CrossRef]

Neu, E.

Neumann, P.

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent Population Trapping of Single Spins in Diamond under Optical Excitation,” Phys. Rev. Lett. 97, 247 401 (2006).
[CrossRef]

Noda, S.

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asanoa, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17 206–17 213 (2007).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Notomi, M.

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q Nanocavity with 1D Photonic Gap,” Opt. Express 16, 11 095 (2008).
[CrossRef]

Nunn, J.

F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, “Creating diamond color centers for quantum optical applications,” Diamond and Related Materials 16, 1887–1895 (2007).
[CrossRef]

O’Brien, J. D.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

OBrien, J. L.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. OBrien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013 007 (2009).
[CrossRef]

Olivero, P.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, I. W. Robert, A. Taylor, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of Ultrathin Single-Crystal Diamond Membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, “Creating diamond color centers for quantum optical applications,” Diamond and Related Materials 16, 1887–1895 (2007).
[CrossRef]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent Population Trapping of Single Spins in Diamond under Optical Excitation,” Phys. Rev. Lett. 97, 247 401 (2006).
[CrossRef]

Painter, O.

P. E. Barclay, O. Painter, C. Santori, K.-M. Fu, and R. Beausoleil, “Coherent interference effects in a nano-assembled optical cavity-QED system,” Opt. Express 19, 8081 (2009).
[CrossRef]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
[CrossRef] [PubMed]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber based measurement of an ultra-small volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081 306(R) (2004).
[CrossRef]

P. E. Barclay, K. Srinivasan, and O. Painter, “Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities,” J. Opt. Soc. Amer. B 20, 2274–2284 (2003).
[CrossRef]

O. Painter, K. Srinivasan, and P. E. Barclay, “Wannier-like equation for the resonant cavity modes of locally perturbed photonic crystals,” Phys. Rev. B 68, 035 214 (2003).
[CrossRef]

O. Painter and K. Srinivasan, “Localized defect states in two-dimensional photonic crystal slab waveguides: A simple model based upon symmetry analysis,” Phys. Rev. B 68, 035 110 (2003).
[CrossRef]

K. Srinivasan and O. Painter, “Momentum Space Design of High-Q Photonic Crystal Nanocavities in Two-Dimensional Slab Waveguides,” Opt. Express 10, 670–684 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670
[PubMed]

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

Park, Y.-S.

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6, 2075–2079 (2006).
[CrossRef] [PubMed]

Petroff, P.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

Peyrade, D.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

Picard, E.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

Poizat, J.-P.

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061 802 (2001).
[CrossRef]

Popa, I.

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Applied Physics Letters 87, 261 909 (2005).
[CrossRef]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of Coherent Oscillations in a Single Electron Spin,” Phys. Rev. Lett. 92, 076 401 (2004).
[CrossRef]

Pottier, P.

A. Jugessur, P. Pottier, and R. De La Rue, “One-dimensional periodic photonic crystal microcavity filters with transition mode-matching features, embedded in ridge waveguides,” Electron. Lett. 39, 367–369 (2003).
[CrossRef]

Prawer, S.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, I. W. Robert, A. Taylor, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of Ultrathin Single-Crystal Diamond Membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide,” Appl. Phys. Lett. 93, 234 107 (2008).
[CrossRef]

F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, “Creating diamond color centers for quantum optical applications,” Diamond and Related Materials 16, 1887–1895 (2007).
[CrossRef]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent Population Trapping of Single Spins in Diamond under Optical Excitation,” Phys. Rev. Lett. 97, 247 401 (2006).
[CrossRef]

P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark Shift Control of Single Optical Centers in Diamond,” Phys. Rev. Lett. 97, 083 002 (2006).
[CrossRef]

Rabeau, J.

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent Population Trapping of Single Spins in Diamond under Optical Excitation,” Phys. Rev. Lett. 97, 247 401 (2006).
[CrossRef]

Rabeau, J. R.

P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark Shift Control of Single Optical Centers in Diamond,” Phys. Rev. Lett. 97, 083 002 (2006).
[CrossRef]

Rarity, J. G.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. OBrien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013 007 (2009).
[CrossRef]

Reichart, P.

F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, “Creating diamond color centers for quantum optical applications,” Diamond and Related Materials 16, 1887–1895 (2007).
[CrossRef]

Riedrich-Mller, J.

Rivoire, K.

K. Rivoire, A. Faraon, and J. Vučković, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063 103 (2008).
[CrossRef]

Robert, I. W.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, I. W. Robert, A. Taylor, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of Ultrathin Single-Crystal Diamond Membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Rodier, J. C.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

Rubanov, S.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, I. W. Robert, A. Taylor, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of Ultrathin Single-Crystal Diamond Membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Rue, R. M. D. L.

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12 084–12 089 (2008).

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Salzman, J.

Santori, C.

C. Santori, P. E. Barclay, K.-M. C. Fu, and R. G. Beausoleil, “Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing,” Phys. Rev. B 79, 125 313 (2009).
[CrossRef]

P. E. Barclay, O. Painter, C. Santori, K.-M. Fu, and R. Beausoleil, “Coherent interference effects in a nano-assembled optical cavity-QED system,” Opt. Express 19, 8081 (2009).
[CrossRef]

K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide,” Appl. Phys. Lett. 93, 234 107 (2008).
[CrossRef]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent Population Trapping of Single Spins in Diamond under Optical Excitation,” Phys. Rev. Lett. 97, 247 401 (2006).
[CrossRef]

P. E. Barclay, C. Santori, K.-M. Fu, and R. G. Beausoleil, “Microcavities for cavity-QED in single crystal diamond,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference Proceedings p. IMF3 (2009).
[PubMed]

Sargent, E. H.

E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455 (2006).
[CrossRef]

Sauvan, C.

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

Schietinger, S.

S. Schietinger, T. Schroder, and O. Benson, “One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator,” Nano Lett. 8, 3911–3915 (2008).
[CrossRef] [PubMed]

Schroder, T.

S. Schietinger, T. Schroder, and O. Benson, “One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator,” Nano Lett. 8, 3911–3915 (2008).
[CrossRef] [PubMed]

Sellars, M. J.

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104 303 (2006).
[CrossRef]

Sharp, S. J.

G. Davies, S. C. Lawson, A. T. Collins, A. Mainwood, and S. J. Sharp, “Vacancy-related centers in diamond,” Phys. Rev. B 46, 13 157–13 170 (1992).
[CrossRef]

Shchekin, O.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Shen, Y.

Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77, 033 201 (2008).
[CrossRef]

Smith, H. I.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-Bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Smith, J. M.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, I. W. Robert, A. Taylor, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of Ultrathin Single-Crystal Diamond Membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” arXiv:0901.3092v2 [quant-ph] (2009).

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, NY, 1983).

Song, B.-S.

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asanoa, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17 206–17 213 (2007).
[CrossRef]

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials 4, 207–210 (2005).
[CrossRef]

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

Sorel, M.

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12 084–12 089 (2008).

Sørensen, A. S.

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-Tolerant Quantum Communication Based on Solid-State Photon Emitters,” Phys. Rev. Lett. 96, 070 504 (2006).
[CrossRef]

Srinivasan, K.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber based measurement of an ultra-small volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081 306(R) (2004).
[CrossRef]

O. Painter and K. Srinivasan, “Localized defect states in two-dimensional photonic crystal slab waveguides: A simple model based upon symmetry analysis,” Phys. Rev. B 68, 035 110 (2003).
[CrossRef]

O. Painter, K. Srinivasan, and P. E. Barclay, “Wannier-like equation for the resonant cavity modes of locally perturbed photonic crystals,” Phys. Rev. B 68, 035 214 (2003).
[CrossRef]

P. E. Barclay, K. Srinivasan, and O. Painter, “Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities,” J. Opt. Soc. Amer. B 20, 2274–2284 (2003).
[CrossRef]

K. Srinivasan and O. Painter, “Momentum Space Design of High-Q Photonic Crystal Nanocavities in Two-Dimensional Slab Waveguides,” Opt. Express 10, 670–684 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670
[PubMed]

Steel, M.

Steinmeyer, G.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-Bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Stoltz, N.

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

Su, C.-H.

Surmacz, K.

F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, “Creating diamond color centers for quantum optical applications,” Diamond and Related Materials 16, 1887–1895 (2007).
[CrossRef]

Sweeney, T. M.

Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77, 033 201 (2008).
[CrossRef]

Takahashi, Y.

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asanoa, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17 206–17 213 (2007).
[CrossRef]

Tamarat, P.

P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark Shift Control of Single Optical Centers in Diamond,” Phys. Rev. Lett. 97, 083 002 (2006).
[CrossRef]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent Population Trapping of Single Spins in Diamond under Optical Excitation,” Phys. Rev. Lett. 97, 247 401 (2006).
[CrossRef]

Tanaka, Y.

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asanoa, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17 206–17 213 (2007).
[CrossRef]

Taniyama, H.

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q Nanocavity with 1D Photonic Gap,” Opt. Express 16, 11 095 (2008).
[CrossRef]

Taylor, A.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, I. W. Robert, A. Taylor, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of Ultrathin Single-Crystal Diamond Membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Taylor, J. M.

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-Tolerant Quantum Communication Based on Solid-State Photon Emitters,” Phys. Rev. Lett. 96, 070 504 (2006).
[CrossRef]

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond,” Science 314, 281–285 (2006).
[CrossRef] [PubMed]

Taylor, R.

F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, “Creating diamond color centers for quantum optical applications,” Diamond and Related Materials 16, 1887–1895 (2007).
[CrossRef]

Thoen, E. R.

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-Bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Tietz, C.

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
[CrossRef]

Togan, E.

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

Tomljenovic-Hanic, S.

Velha, P.

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

Villeneuve, P. R.

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-Bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Vuckovic, J.

K. Rivoire, A. Faraon, and J. Vučković, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063 103 (2008).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

Waldermann, F.

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, I. W. Robert, A. Taylor, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of Ultrathin Single-Crystal Diamond Membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, “Creating diamond color centers for quantum optical applications,” Diamond and Related Materials 16, 1887–1895 (2007).
[CrossRef]

Walmsley, I.

F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, “Creating diamond color centers for quantum optical applications,” Diamond and Related Materials 16, 1887–1895 (2007).
[CrossRef]

Wang, C. F.

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett. 90, 081 110 (2007).
[CrossRef]

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimenstional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201 112 (2007).

Wang, H.

Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77, 033 201 (2008).
[CrossRef]

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6, 2075–2079 (2006).
[CrossRef] [PubMed]

Wang, Z.

F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, “Creating diamond color centers for quantum optical applications,” Diamond and Related Materials 16, 1887–1895 (2007).
[CrossRef]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290 (2000).
[CrossRef] [PubMed]

Wilson, H.

P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark Shift Control of Single Optical Centers in Diamond,” Phys. Rev. Lett. 97, 083 002 (2006).
[CrossRef]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Faelt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 455, 896–899 (2007).
[CrossRef]

Wittmann, C.

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Applied Physics Letters 87, 261 909 (2005).
[CrossRef]

Wrachtrup, J.

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond,” Science 314, 281–285 (2006).
[CrossRef] [PubMed]

P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark Shift Control of Single Optical Centers in Diamond,” Phys. Rev. Lett. 97, 083 002 (2006).
[CrossRef]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent Population Trapping of Single Spins in Diamond under Optical Excitation,” Phys. Rev. Lett. 97, 247 401 (2006).
[CrossRef]

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Applied Physics Letters 87, 261 909 (2005).
[CrossRef]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of Coherent Oscillations in a Single Electron Spin,” Phys. Rev. Lett. 92, 076 401 (2004).
[CrossRef]

Wratchtrup, J.

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, D. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[CrossRef]

Yang, J.

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimenstional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201 112 (2007).

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett. 90, 081 110 (2007).
[CrossRef]

Yariv, A.

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

Young, A.

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. OBrien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013 007 (2009).
[CrossRef]

Zain, A. R. M.

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12 084–12 089 (2008).

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290 (2000).
[CrossRef] [PubMed]

Zibrov, A. S.

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond,” Science 314, 281–285 (2006).
[CrossRef] [PubMed]

Adv. Mater. (1)

B. A. Fairchild, P. Olivero, S. Rubanov, A. D. Greentree, F. Waldermann, I. W. Robert, A. Taylor, J. M. Smith, S. Huntington, B. C. Gibson, D. N. Jamieson, and S. Prawer, “Fabrication of Ultrathin Single-Crystal Diamond Membranes,” Adv. Mater. 20, 4793–4798 (2008).
[CrossRef]

Appl. Phys. Lett. (6)

K.-M. C. Fu, C. Santori, P. E. Barclay, I. Aharonovich, S. Prawer, N. Meyer, A. M. Holm, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers in diamond to a GaP waveguide,” Appl. Phys. Lett. 93, 234 107 (2008).
[CrossRef]

K. Rivoire, A. Faraon, and J. Vučković, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93, 063 103 (2008).
[CrossRef]

C. F. Wang, Y.-S. Choi, J. C. Lee, E. L. Hu, J. Yang, and J. E. Butler, “Observation of whispering gallery modes in nanocrystalline diamond microdisks,” Appl. Phys. Lett. 90, 081 110 (2007).
[CrossRef]

C. F. Wang, R. Hanson, D. D. Awschalom, E. L. Hu, T. Feygelson, J. Yang, and J. E. Butler, “Fabrication and characterization of two-dimenstional photonic crystal microcavities in nanocrystalline diamond,” Appl. Phys. Lett. 91, 201 112 (2007).

D. Morie and T. Baba, “Dispersion-controlled optical group delay device by chirped photonic crystal waveguides,” Appl. Phys. Lett. 85, 1101–1103 (2004).
[CrossRef]

E. Yablonovitch, D. Hwang, T. J. Gmitter, L. T. Florez, and J. P. Harbison, “Van der Waals bonding of GaAs epitaxial liftoff films onto arbitrary substrates,” Appl. Phys. Lett. 56, 2419–2421 (1990).
[CrossRef]

Applied Physics Letters (1)

J. Meijer, B. Burchard, M. Domhan, C. Wittmann, T. Gaebel, I. Popa, F. Jelezko, and J. Wrachtrup, “Generation of single color centers by focused nitrogen implantation,” Applied Physics Letters 87, 261 909 (2005).
[CrossRef]

Diamond and Related Materials (1)

F. Waldermann, P. Olivero, J. Nunn, K. Surmacz, Z. Wang, D. Jaksch, R. Taylor, I. Walmsley, M. Draganski, P. Reichart, A. Greentree, D. Jamieson, and S. Prawer, “Creating diamond color centers for quantum optical applications,” Diamond and Related Materials 16, 1887–1895 (2007).
[CrossRef]

Electron. Lett. (1)

A. Jugessur, P. Pottier, and R. De La Rue, “One-dimensional periodic photonic crystal microcavity filters with transition mode-matching features, embedded in ridge waveguides,” Electron. Lett. 39, 367–369 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

P. Lalanne, “Electromagnetic Analysis of Photonic Crystal Waveguides Operating Above the Light Cone,” IEEE J. Quantum Electron. 38, 800–804 (2002).
[CrossRef]

J. Opt. Soc. Amer. B (1)

P. E. Barclay, K. Srinivasan, and O. Painter, “Design of photonic crystal waveguides for evanescent coupling to optical fiber tapers and integration with high-Q cavities,” J. Opt. Soc. Amer. B 20, 2274–2284 (2003).
[CrossRef]

Nano Lett. (2)

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with Diamond Nanocrystals and Silica Microspheres,” Nano Lett. 6, 2075–2079 (2006).
[CrossRef] [PubMed]

S. Schietinger, T. Schroder, and O. Benson, “One-by-One Coupling of Single Defect Centers in Nanodiamonds to High-Q Modes of an Optical Microresonator,” Nano Lett. 8, 3911–3915 (2008).
[CrossRef] [PubMed]

Nature (5)

Y. Akahane, T. Asano, B.-S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425, 944–947 (2003).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. Gibbs, G. Rupper, C. Ell, O. Shchekin, and D. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432, 200–203 (2004).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Faelt, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 455, 896–899 (2007).
[CrossRef]

D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, “Controlling cavity reflectivity with a single quantum dot,” Nature 450, 857–861 (2007).
[CrossRef] [PubMed]

J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith, and E. P. Ippen, “Photonic-Bandgap microcavities in optical waveguides,” Nature 390, 143–145 (1997).
[CrossRef]

Nature Materials (1)

B.-S. Song, S. Noda, T. Asano, and Y. Akahane, “Ultra-high-Q photonic double-heterostructure nanocavity,” Nature Materials 4, 207–210 (2005).
[CrossRef]

New J. Phys. (2)

A. Young, C. Y. Hu, L. Marseglia, J. P. Harrison, J. L. OBrien, and J. G. Rarity, “Cavity enhanced spin measurement of the ground state spin of an NV center in diamond,” New J. Phys. 11, 013 007 (2009).
[CrossRef]

P. Velha, J. C. Rodier, P. Lalanne, J. P. Hugonin, D. Peyrade, E. Picard, T. Charvolin, and E. Hadji, “Ultra-high-reflectivity photonic-bandgap mirrors in a ridge SOI waveguide,” New J. Phys. 8, 204 (2006).
[CrossRef]

Opt. Express (13)

M. Notomi, E. Kuramochi, and H. Taniyama, “Ultrahigh-Q Nanocavity with 1D Photonic Gap,” Opt. Express 16, 11 095 (2008).
[CrossRef]

K. Srinivasan and O. Painter, “Momentum Space Design of High-Q Photonic Crystal Nanocavities in Two-Dimensional Slab Waveguides,” Opt. Express 10, 670–684 (2002). http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-15-670
[PubMed]

M. W. McCutcheon and M. Lončar, “Design of an ultrahigh Quality factor silicon nitride photonic crystal nanocavity for coupling to diamond nanocrystals,” Opt. Express 16, 19 136 (2008).
[CrossRef]

J. Chan, M. Eichenfield, R. Camacho, and O. Painter, “Optical and mechanical design of a zipper photonic crystal optomechanical cavity,” Opt. Express 17, 3802–3817 (2009).
[CrossRef] [PubMed]

P. Lalanne, S. Mias, and J. P. Hugonin, “Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,” Opt. Express 12, 458–467 (2004).
[CrossRef] [PubMed]

C. Sauvan, G. Lecamp, P. Lalanne, and J. Hugonin, “Modal-reflectivity enhancement by geometry tuning in Photonic Crystal microcavities,” Opt. Express 13, 245–255 (2005).
[CrossRef] [PubMed]

Y. Takahashi, H. Hagino, Y. Tanaka, B.-S. Song, T. Asanoa, and S. Noda, “High-Q nanocavity with a 2-ns photon lifetime,” Opt. Express 15, 17 206–17 213 (2007).
[CrossRef]

C.-H. Su, A. D. Greentree, and L. C. L. Hollenberg, “Towards a picosecond transform-limited nitrogen-vacancy based single photon source,” Opt. Express 16, 6240–6250 (2008).
[CrossRef] [PubMed]

P. E. Barclay, O. Painter, C. Santori, K.-M. Fu, and R. Beausoleil, “Coherent interference effects in a nano-assembled optical cavity-QED system,” Opt. Express 19, 8081 (2009).
[CrossRef]

S. Tomljenovic-Hanic, M. Steel, C. de Sterke, and J. Salzman, “Diamond based photonic crystal microcavities,” Opt. Express 14, 3556–3562 (2006).
[CrossRef] [PubMed]

C. Kreuzer, J. Riedrich-Mller, E. Neu, and C. Becher, “Design of Photonic Crystal Microcavities in Diamond Films,” Opt. Express 16, 1632–1644 (2008).
[CrossRef] [PubMed]

A. R. M. Zain, N. P. Johnson, M. Sorel, and R. M. D. L. Rue, “Ultra high quality factor one dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator (SOI),” Opt. Express 16, 12 084–12 089 (2008).

I. Bayn and J. Salzman, “Ultra high-Q photonic crystal nanocavity design: The effect of a low-ε slab material,” Opt. Express 16, 4972–4980 (2008).
[CrossRef] [PubMed]

Phys. Rev. A (1)

A. Beveratos, R. Brouri, T. Gacoin, J.-P. Poizat, and P. Grangier, “Nonclassical radiation from diamond nanocrystals,” Phys. Rev. A 64, 061 802 (2001).
[CrossRef]

Phys. Rev. B (8)

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber based measurement of an ultra-small volume high-Q photonic crystal microcavity,” Phys. Rev. B 70, 081 306(R) (2004).
[CrossRef]

S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B 62, 8212–8222 (2000).
[CrossRef]

Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77, 033 201 (2008).
[CrossRef]

N. B. Manson, J. P. Harrison, and M. J. Sellars, “Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics,” Phys. Rev. B 74, 104 303 (2006).
[CrossRef]

O. Painter, K. Srinivasan, and P. E. Barclay, “Wannier-like equation for the resonant cavity modes of locally perturbed photonic crystals,” Phys. Rev. B 68, 035 214 (2003).
[CrossRef]

O. Painter and K. Srinivasan, “Localized defect states in two-dimensional photonic crystal slab waveguides: A simple model based upon symmetry analysis,” Phys. Rev. B 68, 035 110 (2003).
[CrossRef]

C. Santori, P. E. Barclay, K.-M. C. Fu, and R. G. Beausoleil, “Vertical distribution of nitrogen-vacancy centers in diamond formed by ion implantation and annealing,” Phys. Rev. B 79, 125 313 (2009).
[CrossRef]

G. Davies, S. C. Lawson, A. T. Collins, A. Mainwood, and S. J. Sharp, “Vacancy-related centers in diamond,” Phys. Rev. B 46, 13 157–13 170 (1992).
[CrossRef]

Phys. Rev. Lett. (6)

V. S. C. Manga Rao and S. Hughes, “Single Quantum Dot Spontaneous Emission in a Finite-Size Photonic Crystal Waveguide: Proposal for an Efficient “On Chip” Single Photon Gun,” Phys. Rev. Lett. 99, 193 901 (2007).

P. Tamarat, T. Gaebel, J. R. Rabeau, M. Khan, A. D. Greentree, H. Wilson, L. C. L. Hollenberg, S. Prawer, P. Hemmer, F. Jelezko, and J. Wrachtrup, “Stark Shift Control of Single Optical Centers in Diamond,” Phys. Rev. Lett. 97, 083 002 (2006).
[CrossRef]

C. Santori, P. Tamarat, P. Neumann, J. Wrachtrup, D. Fattal, R. G. Beausoleil, J. Rabeau, P. Olivero, A. D. Greentree, S. Prawer, F. Jelezko, and P. Hemmer, “Coherent Population Trapping of Single Spins in Diamond under Optical Excitation,” Phys. Rev. Lett. 97, 247 401 (2006).
[CrossRef]

F. Jelezko, T. Gaebel, I. Popa, A. Gruber, and J. Wrachtrup, “Observation of Coherent Oscillations in a Single Electron Spin,” Phys. Rev. Lett. 92, 076 401 (2004).
[CrossRef]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85, 290 (2000).
[CrossRef] [PubMed]

L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Fault-Tolerant Quantum Communication Based on Solid-State Photon Emitters,” Phys. Rev. Lett. 96, 070 504 (2006).
[CrossRef]

Phys. Scr. (1)

H. J. Kimble, “Strong Interactions of Single Atoms and Photons in Cavity QED,” Phys. Scr. T76, 127–137 (1998).
[CrossRef]

Rev. Mod. Phys. (1)

E. Istrate and E. H. Sargent, “Photonic crystal heterostructures and interfaces,” Rev. Mod. Phys. 78, 455 (2006).
[CrossRef]

Science (4)

A. Gruber, A. Dräbenstedt, C. Tietz, L. Fleury, J. Wratchtrup, and C. v. Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276, 2012–2014 (1997).
[CrossRef]

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond,” Science 316, 1312–1316 (2007).
[CrossRef]

L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, “Coherent Dynamics of Coupled Electron and Nuclear Spin Qubits in Diamond,” Science 314, 281–285 (2006).
[CrossRef] [PubMed]

O. Painter, R. K. Lee, A. Yariv, A. Scherer, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science 284, 1819–1824 (1999).
[CrossRef] [PubMed]

Other (4)

S. C. Benjamin, B. W. Lovett, and J. M. Smith, “Prospects for measurement-based quantum computing with solid state spins,” arXiv:0901.3092v2 [quant-ph] (2009).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, New York, NY, 1983).

All FDTD simulations used the MEEP software package. http://ab-initio.mit.edu/wiki/index.php/Meep

P. E. Barclay, C. Santori, K.-M. Fu, and R. G. Beausoleil, “Microcavities for cavity-QED in single crystal diamond,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference Proceedings p. IMF3 (2009).
[PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic of the GaP-on-diamond photonic crystal cavity design. (a) Isometric view, (b) end view. For the optimized structure studied in this paper, [w,d,h]=[192,128,640] nm, [ao,ac ]=[160,141] nm (tapered over 6 periods), and the hole radius r=43 nm.

Fig. 2.
Fig. 2.

GaP-diamond photonic crystal waveguide band structure, and GaP, diamond substrate, and air lightlines. Shaded regions indicate the presence of a continuum of lossy radiating modes. In both (a) and (b) the photonic crystal waveguide modes (red and blue points) were calculated for a structure with h=640 nm. The diamond lightline in (a) is that of a bulk diamond substrate. The filled black points in (b) are the lowest frequency Ey polarized modes of an infinitely tall diamond slab of width w patterned with air holes along the vertical axis whose spacing and radius are equal to that of the GaP waveguiding layer.

Fig. 3.
Fig. 3.

Dependence of the photon loss rate (~ω/Qwg ) of the TE-1 photonic crystal waveguide mode on etch depth, for k=π/ac , and hole spacing a=ac =141 nm).

Fig. 4.
Fig. 4.

(a) Lattice constant acav as a function of position in the cavity. Each point, xi , on the graph corresponds to a position midway between the center of two holes spaced by acav (xi ). (b) Frequency of the photonic crystal waveguide TE-1 valence band edge, ωTE-1 X=ωTE-1(kX=π/a), for a set by the cavity’s varying “local” hole spacing, acav(xi), shown in (a).

Fig. 5.
Fig. 5.

Dominant electric field component (Ey ) of the high-Q nanocavity mode. (a) Top view: x-y plane bisects the GaP waveguiding layer. (b) End view: y-z plane through the center of the cavity. (c) Vertical profile of the field and dielectric constant.

Fig. 6.
Fig. 6.

Dependence of nanocavity mode Q on geometric parameters. The total Q (blue points) and the contribution to Q from radiation into specific directions (other colored points) are given. Dependence of Q on (a) etch depth h, (b) number of “mirror” periods N in the x̂ direction between the edge of the graded cavity region and the PML absorbing simulation boundary, (c) cavity minimum (center) hole spacing ac. For N<0 in (b), the PML boundary of the simulation domain overlaps |N| periods of the graded cavity region.

Fig. 7.
Fig. 7.

(a) Geometry of the simulated dipole and the asymmetric photonic crystal waveguide hole pattern. Left of the dipole, the hole spacing is set to a value (ao ) larger than the hole spacing (ac ) to the right of the dipole. For frequencies close to the valence band edge ωTE-1 X of the right waveguide region, there are no propagating waveguide modes to the left of the dipole. In the transition region, the hole spacing and hole radius are graded to 0.75 of their nominal values in order to reduce back reflections [51]. More precisely, the hole spacings and hole radii in the transition region are scaled by [0.95,0.86,0.8,0.75] (moving in the +x̂ direction) from the values in the waveguide region. (b) Normalized radiated spectra of the dipole into waveguide and non-waveguide radiation channels. (c) Normalized radiated spectra of the dipole into the principal directions of the simulation domain.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

gNV2π=18π2 3ωγZPLV̅nGaPnDia E(rNV)Eo
F=34π2QV̅nGaPnDiaE(rNV)Eo2γZPLγtot=2gNV2κγtot .
s(ω)2=38π E(rNV)Eo2 (λnGaP)2A ng(ω)nDia ,
A=1ao udrn2(r)E(r)2(n(r)2E(r)2)max ,

Metrics