Abstract

We study the oscillatory thermal dynamics of a high-Q PDMS-coated silica microtoroid both experimentally and theoretically. We demonstrate that the competing thermo-optic effects in silica and PDMS lead to thermally-induced self-modulation in the transmission spectra. A dynamical model is built using thermal dynamics and coupled-mode theory to analyze the oscillation behaviors. Effects of input power, taper-cavity air gap and wavelength scanning speed on the oscillation behaviors are investigated with a detailed comparison between theory and experiments.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
    [CrossRef]
  2. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  3. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [CrossRef] [PubMed]
  4. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
    [CrossRef] [PubMed]
  5. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
    [CrossRef] [PubMed]
  6. L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
    [CrossRef]
  7. Y.-F. Xiao, Z.-F. Han, and G.-C. Guo, “Quantum computation without strict strong coupling on a silicon chip,” Phys. Rev. A 73(5), 052324 (2006).
    [CrossRef]
  8. T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
    [CrossRef] [PubMed]
  9. Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
    [CrossRef] [PubMed]
  10. M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9(4), 1447–1450 (2009).
    [CrossRef] [PubMed]
  11. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
    [CrossRef] [PubMed]
  12. H. Rokhsari and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett. 30(4), 427–429 (2005).
    [CrossRef] [PubMed]
  13. F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence of intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
    [CrossRef]
  14. V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).
  15. A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S. Ilchenko, “Nonstationary nonlinear effects in optical microspheres,” J. Opt. Soc. Am. B 22(2), 459–465 (2005).
    [CrossRef]
  16. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
    [CrossRef] [PubMed]
  17. C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. Deych, “Nonlinear thermal effects in optical microspheres at different wavelength sweeping speeds,” Opt. Express 16(9), 6285–6301 (2008).
    [CrossRef] [PubMed]
  18. Y. S. Park and H. Wang, “Regenerative pulsation in silica microspheres,” Opt. Lett. 32(21), 3104–3106 (2007).
    [CrossRef] [PubMed]
  19. T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisc resonator,” Opt. Express 14(2), 817–831 (2006).
    [CrossRef] [PubMed]
  20. O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement,” Appl. Phys. Lett. 89(22), 223901 (2006).
    [CrossRef]
  21. I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching,” J. Opt. Soc. Am. B 24(3), 653–659 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=josab-24-3-653 .
    [CrossRef]
  22. L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
    [CrossRef]
  23. M. Han and A. Wang, “Temperature compensation of optical microresonators using a surface layer with negative thermo-optic coefficient,” Opt. Lett. 32(13), 1800–1802 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-13-1800 .
    [CrossRef] [PubMed]
  24. J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46(3), 389–396 (2007), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-3-389 .
    [CrossRef] [PubMed]
  25. Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” (accepted by Appl. Phys. Lett .).
  26. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997), http://www.opticsinfobase.org/abstract.cfm?URI=ol-22-15-1129 .
    [CrossRef] [PubMed]
  27. The reason for the fast temperature variations within the mode volume in PDMS is twofold. First, the volume of PDMS layer is much smaller than that of the bulk silica core, therefore thermal dissipation from the mode volume to PDMS layer is faster than to silica. Second, most optical losses are concentrated in PDMS layer due to its larger absorption coefficient than silica, so that PDMS absorbs more energy.
  28. M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16(1), 147–154 (1999), http://www.opticsinfobase.org/abstract.cfm?URI=josab-16-1-147 .
    [CrossRef]
  29. C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” IEEE J. Lightwave Technol. 35, 1322–1331 (1999).

2009

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[CrossRef] [PubMed]

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9(4), 1447–1450 (2009).
[CrossRef] [PubMed]

2008

C. Schmidt, A. Chipouline, T. Pertsch, A. Tünnermann, O. Egorov, F. Lederer, and L. Deych, “Nonlinear thermal effects in optical microspheres at different wavelength sweeping speeds,” Opt. Express 16(9), 6285–6301 (2008).
[CrossRef] [PubMed]

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[CrossRef]

2007

2006

T. J. Johnson, M. Borselli, and O. Painter, “Self-induced optical modulation of the transmission through a high-Q silicon microdisc resonator,” Opt. Express 14(2), 817–831 (2006).
[CrossRef] [PubMed]

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement,” Appl. Phys. Lett. 89(22), 223901 (2006).
[CrossRef]

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[CrossRef] [PubMed]

Y.-F. Xiao, Z.-F. Han, and G.-C. Guo, “Quantum computation without strict strong coupling on a silicon chip,” Phys. Rev. A 73(5), 052324 (2006).
[CrossRef]

2005

2004

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[CrossRef] [PubMed]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[CrossRef] [PubMed]

2003

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
[CrossRef]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

1999

M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16(1), 147–154 (1999), http://www.opticsinfobase.org/abstract.cfm?URI=josab-16-1-147 .
[CrossRef]

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” IEEE J. Lightwave Technol. 35, 1322–1331 (1999).

1998

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence of intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

1997

1992

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

1989

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[CrossRef]

Alton, D. J.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[CrossRef] [PubMed]

Aoki, T.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[CrossRef] [PubMed]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Armani, D. K.

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
[CrossRef]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

I. Teraoka and S. Arnold, “Whispering-gallery modes in a microsphere coated with a high-refractive index layer: polarization-dependent sensitivity enhancement of the resonance-shift sensor and TE-TM resonance matching,” J. Opt. Soc. Am. B 24(3), 653–659 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=josab-24-3-653 .
[CrossRef]

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement,” Appl. Phys. Lett. 89(22), 223901 (2006).
[CrossRef]

Birks, T. A.

Borselli, M.

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[CrossRef]

Carmon, T.

Cheung, G.

Chipouline, A.

Cook, A. K.

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[CrossRef] [PubMed]

Culic-Viskota, J.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement,” Appl. Phys. Lett. 89(22), 223901 (2006).
[CrossRef]

Dayan, B.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[CrossRef] [PubMed]

Deych, L.

Dinyari, K. N.

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9(4), 1447–1450 (2009).
[CrossRef] [PubMed]

Dong, C.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[CrossRef]

Egorov, O.

Fan, S.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” IEEE J. Lightwave Technol. 35, 1322–1331 (1999).

Fan, X.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46(3), 389–396 (2007), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-3-389 .
[CrossRef] [PubMed]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Fomin, A. E.

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Gaathon, O.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement,” Appl. Phys. Lett. 89(22), 223901 (2006).
[CrossRef]

Gaddam, V.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[CrossRef]

Gorodetskii, M. L.

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

Gorodetsky, M. L.

Grudinin, I. S.

Guo, G.-C.

Y.-F. Xiao, Z.-F. Han, and G.-C. Guo, “Quantum computation without strict strong coupling on a silicon chip,” Phys. Rev. A 73(5), 052324 (2006).
[CrossRef]

Han, M.

Han, Z.-F.

Y.-F. Xiao, Z.-F. Han, and G.-C. Guo, “Quantum computation without strict strong coupling on a silicon chip,” Phys. Rev. A 73(5), 052324 (2006).
[CrossRef]

Hare, J.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence of intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Haroche, S.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence of intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Haus, H. A.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” IEEE J. Lightwave Technol. 35, 1322–1331 (1999).

He, L.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[CrossRef]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” (accepted by Appl. Phys. Lett .).

Ilchenko, V. S.

A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S. Ilchenko, “Nonstationary nonlinear effects in optical microspheres,” J. Opt. Soc. Am. B 22(2), 459–465 (2005).
[CrossRef]

M. L. Gorodetsky and V. S. Ilchenko, “Optical microsphere resonators: optimal coupling to high-Q whispering-gallery modes,” J. Opt. Soc. Am. B 16(1), 147–154 (1999), http://www.opticsinfobase.org/abstract.cfm?URI=josab-16-1-147 .
[CrossRef]

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence of intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[CrossRef]

Jacques, F.

Joannopoulos, J. D.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” IEEE J. Lightwave Technol. 35, 1322–1331 (1999).

Johnson, T. J.

Khan, M. J.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” IEEE J. Lightwave Technol. 35, 1322–1331 (1999).

Kimble, H. J.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[CrossRef] [PubMed]

Kippenberg, T. J.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[CrossRef] [PubMed]

Knight, J. C.

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Larsson, M.

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9(4), 1447–1450 (2009).
[CrossRef] [PubMed]

Lederer, F.

Lefevre-Seguin, V.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence of intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Manolatou, C.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” IEEE J. Lightwave Technol. 35, 1322–1331 (1999).

Mihnev, M.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement,” Appl. Phys. Lett. 89(22), 223901 (2006).
[CrossRef]

Ostby, E.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[CrossRef] [PubMed]

Painter, O.

Park, Y. S.

Y. S. Park and H. Wang, “Regenerative pulsation in silica microspheres,” Opt. Lett. 32(21), 3104–3106 (2007).
[CrossRef] [PubMed]

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[CrossRef] [PubMed]

Parkins, A. S.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[CrossRef] [PubMed]

Pertsch, T.

Raimond, J.-M.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence of intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Regal, C. A.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[CrossRef] [PubMed]

Roch, J.-F.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence of intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Rokhsari, H.

Schmidt, C.

Shopova, S. I.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[CrossRef] [PubMed]

Sun, Y.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Suter, J. D.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46(3), 389–396 (2007), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-3-389 .
[CrossRef] [PubMed]

Teraoka, I.

Treussart, F.

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence of intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

Tünnermann, A.

Vahala, K.

Vahala, K. J.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[CrossRef] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

H. Rokhsari and K. J. Vahala, “Observation of Kerr nonlinearity in microcavities at room temperature,” Opt. Lett. 30(4), 427–429 (2005).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[CrossRef] [PubMed]

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
[CrossRef]

Villeneuve, P. R.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” IEEE J. Lightwave Technol. 35, 1322–1331 (1999).

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

Wang, A.

Wang, H.

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9(4), 1447–1450 (2009).
[CrossRef] [PubMed]

Y. S. Park and H. Wang, “Regenerative pulsation in silica microspheres,” Opt. Lett. 32(21), 3104–3106 (2007).
[CrossRef] [PubMed]

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[CrossRef] [PubMed]

White, I. M.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46(3), 389–396 (2007), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-3-389 .
[CrossRef] [PubMed]

Xiao, Y.-F.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[CrossRef]

Y.-F. Xiao, Z.-F. Han, and G.-C. Guo, “Quantum computation without strict strong coupling on a silicon chip,” Phys. Rev. A 73(5), 052324 (2006).
[CrossRef]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” (accepted by Appl. Phys. Lett .).

Yang, L.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[CrossRef]

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004).
[CrossRef] [PubMed]

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
[CrossRef]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” (accepted by Appl. Phys. Lett .).

Zhu, H.

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

J. D. Suter, I. M. White, H. Zhu, and X. Fan, “Thermal characterization of liquid core optical ring resonator sensors,” Appl. Opt. 46(3), 389–396 (2007), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-46-3-389 .
[CrossRef] [PubMed]

Zhu, J.

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[CrossRef]

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” (accepted by Appl. Phys. Lett .).

Anal. Chim. Acta

X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, “Sensitive optical biosensors for unlabeled targets: a review,” Anal. Chim. Acta 620(1-2), 8–26 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett

Y.-F. Xiao, L. He, J. Zhu, and L. Yang, “Electromagnetically induced transparency-like effect in a single polydimethylsiloxane coated silica microtoroid,” (accepted by Appl. Phys. Lett .).

Appl. Phys. Lett.

O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, and S. Arnold, “Enhancing sensitivity of a whispering gallery mode biosensor by subwavelength confinement,” Appl. Phys. Lett. 89(22), 223901 (2006).
[CrossRef]

L. He, Y.-F. Xiao, C. Dong, J. Zhu, V. Gaddam, and L. Yang, “Compensation of thermal refraction effect in high-Q toroidal microresonator by polydimethylsiloxane coating,” Appl. Phys. Lett. 93(20), 201102 (2008).
[CrossRef]

L. Yang, D. K. Armani, and K. J. Vahala, “Fiber-coupled erbium microlasers on a chip,” Appl. Phys. Lett. 83(5), 825–826 (2003).
[CrossRef]

Eur. Phys. J. D

F. Treussart, V. S. Ilchenko, J.-F. Roch, J. Hare, V. Lefevre-Seguin, J.-M. Raimond, and S. Haroche, “Evidence of intrinsic Kerr bistability of high-Q microsphere resonators in superfluid helium,” Eur. Phys. J. D 1(3), 235–238 (1998).
[CrossRef]

IEEE J. Lightwave Technol.

C. Manolatou, M. J. Khan, S. Fan, P. R. Villeneuve, H. A. Haus, and J. D. Joannopoulos, “Coupling of modes analysis of resonant channel add-drop filtering,” IEEE J. Lightwave Technol. 35, 1322–1331 (1999).

J. Opt. Soc. Am. B

Laser Phys.

V. S. Ilchenko and M. L. Gorodetskii, “Thermal nonlinear effects in optical whispering gallery microresonators,” Laser Phys. 2, 1004–1009 (1992).

Nano Lett.

Y. S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Lett. 6(9), 2075–2079 (2006).
[CrossRef] [PubMed]

M. Larsson, K. N. Dinyari, and H. Wang, “Composite optical microcavity of diamond nanopillar and silica microsphere,” Nano Lett. 9(4), 1447–1450 (2009).
[CrossRef] [PubMed]

Nat. Methods

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

Nature

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Lett. A

V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A 137(7-8), 393–397 (1989).
[CrossRef]

Phys. Rev. A

Y.-F. Xiao, Z.-F. Han, and G.-C. Guo, “Quantum computation without strict strong coupling on a silicon chip,” Phys. Rev. A 73(5), 052324 (2006).
[CrossRef]

Phys. Rev. Lett.

T. Aoki, A. S. Parkins, D. J. Alton, C. A. Regal, B. Dayan, E. Ostby, K. J. Vahala, and H. J. Kimble, “Efficient routing of single photons by one atom and a microtoroidal cavity,” Phys. Rev. Lett. 102(8), 083601 (2009).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93(8), 083904 (2004).
[CrossRef] [PubMed]

Science

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Other

The reason for the fast temperature variations within the mode volume in PDMS is twofold. First, the volume of PDMS layer is much smaller than that of the bulk silica core, therefore thermal dissipation from the mode volume to PDMS layer is faster than to silica. Second, most optical losses are concentrated in PDMS layer due to its larger absorption coefficient than silica, so that PDMS absorbs more energy.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematics of the experiment setup. CW: continuous wave.

Fig. 2
Fig. 2

Transmission spectra of a PDMS-coated silica microtoroid at input powers of 0.7 mW (a) and 3.1 mW (b). The wavelength scanning speed is set as 40 nm/s. Insets: Transmission spectra corresponding to the same resonant mode with wavelength up- and down- scans (blue lines: triangle wave from the function generator).

Fig. 3
Fig. 3

Thermally induced oscillations in the transmission spectra of a PDMS-coated silica microtoroidal cavity. (a) Measured and simulated optical transmission spectrum. (b) Simulated temperature variations in silica and PDMS. (c) Calculated resonance wavelength (λr ), scanning wavelength (λs ), and the detuning between them (Δλλs λr ). (d)-(f) Corresponding enlarged views of (a)-(c) for the first oscillation cycle specified by the dotted oval in (a). The oscillation cycle is divided into four regions (I, II, III, IV) marked by different colors in (d)-(f). The dot-dashed line (black) in (f) represents the zero detuning. The input power is 3.1 mW and the wavelength scanning speed is 40 nm/s.

Fig. 4
Fig. 4

Experimental (black solid lines) and numerical simulation (red dashed lines) results of the transmission spectra at input powers of 1.11 mW (a), 1.98 mW (b), 3.15 mW (c), and 4.04 mW (d), respectively. The wavelength scanning speed is 40 nm/s. Insets: Simulation results of scanning wavelength λs (orange dashed lines) and resonance wavelength λr (green solid lines).

Fig. 5
Fig. 5

Experimental (black solid lines) and numerical simulation (red dashed lines) results of transmission spectra with the taper-cavity air gap of 0.8 μm (a), 0.4 μm (b), 0.2 μm (c), and 0 μm (d), respectively. The transmission is measured at the input power of 3.91mW, with the wavelength scanning speed of 40 nm/s. Insets: Simulation results of scanning wavelength λs (orange dashed lines) and resonance wavelength λr (green solid lines).

Fig. 6
Fig. 6

Experimental (black solid lines) and numerical simulation (red dashed lines) results of transmission spectra with the wavelength scanning speed of 40 nm/s (a), 80 nm/s (b), and 120 nm/s (c), respectively. The input power is set at 3.91mW. Insets: Simulation results of scanning wavelength λs (orange dashed lines) and resonance wavelength λr (green solid lines).

Tables (1)

Tables Icon

Table 1 Parameters used in the numerical simulations.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λr(t)λ0(1+η1dn1dTΔT1(t)+η2dn2dTΔT2(t)neff+nKerrneffPC(t)A)
dΔTi(t)dt=γth,iΔTi(t)+γabs,iPC(t)   
dEC(t)dt=[δ0+δc+iΔω(t)]EC(t)+iκτrEin .
EC(t)=iκτr[δ0+δc+iΔω(t)]Ein .
Eo(t)=1κ2Ein+iκEC(t)

Metrics