Abstract

Dissipative soliton (DS) evolution in passively mode-locked fiber lasers with ultra-large net-normal-dispersion (as large as 1 ps2) is investigated. The proposed DS laser operates on three statuses with respect to the pump power. The DS laser works on a status that is similar to an all-normal-dispersion laser when the pump power is low, whereas it creates a new type of pulses exhibited as the trapezoid-spectrum profile when the pump power is large. The laser cavity emits the unstable pulses between the above two statuses. The cubic–quintic Ginzburg–Landau equation can serve to qualitatively explain our experimental observations.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Salhi, A. Haboucha, H. Leblond, and F. Sanchez, "Theoretical study of figure-eight all-fiber laser," Phys. Rev. A 77, 033828 (2008).
    [CrossRef]
  2. F. W. Wise, A. Chong, and W. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser Photonics Rev. 2, 58-73 (2008).
    [CrossRef]
  3. X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, "Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation," Laser Phys. 18, 1357-1361 (2008).
    [CrossRef]
  4. W. H. Renninger, A. Chong, and F. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 023814 (2008).
    [CrossRef]
  5. R. Weill, B. Vodonos, A. Gordon, O. Gat, and B. Fischer, "Statistical light-mode dynamics of multipulse passive mode locking," Phys. Rev. E 76, 031112 (2007).
    [CrossRef]
  6. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Self- starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation," Electron. Lett. 28, 1391-1393 (1992).
    [CrossRef]
  7. Y. Logvin and H. Anis, "Similariton pulse instability in mode-locked Yb-doped fiber laser in the vicinity of zero cavity dispersion," Opt. Express 15, 13607-13612 (2007)
    [CrossRef] [PubMed]
  8. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, "77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser," Opt. Lett. 18, 1080-1082 (1993).
    [CrossRef] [PubMed]
  9. M. Olivier and M. Piché, "Origin of the bound states of pulses in the stretched-pulse fiber laser," Opt. Express 17, 405-418 (2009).
    [CrossRef] [PubMed]
  10. F. Haxsen, A. Ruehl, M. Engelbrecht, D. Wandt, U. Morgner, and D. Kracht, "Stretched-pulse operation of a thulium-doped fiber laser," Opt. Express 16, 20471-20476 (2008).
    [CrossRef] [PubMed]
  11. O. Y. Schwartz and S. K. Turitsyn, "Multiple-period dispersion-managed solitons," Phys. Rev. A 76, 043819 (2007).
    [CrossRef]
  12. F. O. Ilday, J. R. Buckley, W. G. Clark, and F.W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  13. B. Ortaç, A. Hideur, M. Brunel, C. Chédot, J. Limpert, A. Tünnermann, and F. Ö. Ilday, "Generation of parabolic bound pulses from a Yb-fiber laser," Opt. Express 14, 6075-6083 (2006).
    [CrossRef] [PubMed]
  14. C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, "Parabolic pulse generation with active or passive dispersion decreasing optical fibers," Opt. Express 15, 15824-15835 (2007).
    [CrossRef] [PubMed]
  15. Ruehl, D. Wandt, U. Morgner, D. Kracht, "Normal dispersive ultrafast fiber oscillators," IEEE J. Sel. Top. Quantum Electro. 15, 170-181 (2009).
    [CrossRef]
  16. L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1778-1790 (2006).
    [CrossRef]
  17. M. Schultz, H. Karow, O. Prochnow, D. Wandt, U. Morgner, and D. Kracht, "All-fiber ytterbium femtosecond laser without dispersion compensation," Opt. Express 16, 19562-19567 (2008)
    [CrossRef] [PubMed]
  18. Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, "High-power all-normal-dispersion femtosecond pulse generation from an Yb-doped large-mode-area microstructure fiber laser," Opt.Lett. 32, 2738-2740 (2007).
    [CrossRef] [PubMed]
  19. Chong, W. H. Renninger, and F. W. Wise, "Environmentally stable all-normal-dispersion femtosecond fiber laser," Opt. Lett. 33, 1071-1073 (2008).
    [CrossRef] [PubMed]
  20. Komarov and F. Sanchez, "Structural dissipative solitons in passive mode-locked fiber lasers," Phys. Rev. E 77, 066201 (2008).
    [CrossRef]
  21. N. Akhmediev and A. Ankiewics, Eds. Dissipative Solitons (Springer, Berlin, 2005).
    [CrossRef]
  22. Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, "Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion," Opt. Express 16, 19322-19329 (2008).
    [CrossRef]
  23. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, "Dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
    [CrossRef]
  24. Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, "Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation," Phys. Rev. A 75, 033811 (2007).
    [CrossRef]
  25. Y. Tang, L. M. Zhao, G. Q. Xie and L. J. Qian, "Coexistence and competition between different soliton- shaping mechanisms in a laser," Phys. Rev. A 75, 063810 (2007).
    [CrossRef]
  26. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Burlington, MA, 2006).
  27. J. N. Kutz, "Mode-Locked Soliton Lasers," SIAM Rev. 48, 629-678 (2006).
    [CrossRef]
  28. M. E. Fermann, V. I. Kruglov, B.C. Thomsen, J.M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010 (2000).
    [CrossRef] [PubMed]
  29. H. A. Haus, J. G. Fujimoto, and E. P. Ippen, " Structures for additive pulse mode locking," J. Opt. Soc. Am. B 8, 2068-2076 (1991).
    [CrossRef]
  30. J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, "Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser," Phys. Rev. E 70, 066612 (2004).
    [CrossRef]
  31. G. Bale and J. N. Kutz, "Variational method for mode-locked lasers," J. Opt. Soc. Am. B 25, 1193-1202 (2008).
    [CrossRef]
  32. V. L. Kalashnikov, A. Fernández, and A. Apolonski, "High-order dispersion in chirped-pulse oscillators," Opt. Express 16, 4206-4216 (2008).
    [CrossRef] [PubMed]
  33. P. Bélanger, "Stable operation of mode-locked fiber lasers: similariton regime," Opt. Express 15, 11033-11041 (2007).
    [CrossRef] [PubMed]
  34. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
    [CrossRef]
  35. W. van Saarloos and P. C. Hohenberg, "Fronts, pulses, sources and sinks in generalized complex Ginzburg- Landau equations," Physica D 56, 303-367 (1992).
    [CrossRef]
  36. J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783-4796 (1997).
    [CrossRef]
  37. N. Akhmediev, J.M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124-3128 (2008).
    [CrossRef]

2009

M. Olivier and M. Piché, "Origin of the bound states of pulses in the stretched-pulse fiber laser," Opt. Express 17, 405-418 (2009).
[CrossRef] [PubMed]

Ruehl, D. Wandt, U. Morgner, D. Kracht, "Normal dispersive ultrafast fiber oscillators," IEEE J. Sel. Top. Quantum Electro. 15, 170-181 (2009).
[CrossRef]

2008

M. Schultz, H. Karow, O. Prochnow, D. Wandt, U. Morgner, and D. Kracht, "All-fiber ytterbium femtosecond laser without dispersion compensation," Opt. Express 16, 19562-19567 (2008)
[CrossRef] [PubMed]

F. Haxsen, A. Ruehl, M. Engelbrecht, D. Wandt, U. Morgner, and D. Kracht, "Stretched-pulse operation of a thulium-doped fiber laser," Opt. Express 16, 20471-20476 (2008).
[CrossRef] [PubMed]

M. Salhi, A. Haboucha, H. Leblond, and F. Sanchez, "Theoretical study of figure-eight all-fiber laser," Phys. Rev. A 77, 033828 (2008).
[CrossRef]

F. W. Wise, A. Chong, and W. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser Photonics Rev. 2, 58-73 (2008).
[CrossRef]

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, "Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation," Laser Phys. 18, 1357-1361 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 023814 (2008).
[CrossRef]

Chong, W. H. Renninger, and F. W. Wise, "Environmentally stable all-normal-dispersion femtosecond fiber laser," Opt. Lett. 33, 1071-1073 (2008).
[CrossRef] [PubMed]

Komarov and F. Sanchez, "Structural dissipative solitons in passive mode-locked fiber lasers," Phys. Rev. E 77, 066201 (2008).
[CrossRef]

Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, "Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion," Opt. Express 16, 19322-19329 (2008).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, "Dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
[CrossRef]

G. Bale and J. N. Kutz, "Variational method for mode-locked lasers," J. Opt. Soc. Am. B 25, 1193-1202 (2008).
[CrossRef]

V. L. Kalashnikov, A. Fernández, and A. Apolonski, "High-order dispersion in chirped-pulse oscillators," Opt. Express 16, 4206-4216 (2008).
[CrossRef] [PubMed]

N. Akhmediev, J.M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124-3128 (2008).
[CrossRef]

2007

P. Bélanger, "Stable operation of mode-locked fiber lasers: similariton regime," Opt. Express 15, 11033-11041 (2007).
[CrossRef] [PubMed]

Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, "Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation," Phys. Rev. A 75, 033811 (2007).
[CrossRef]

Y. Tang, L. M. Zhao, G. Q. Xie and L. J. Qian, "Coexistence and competition between different soliton- shaping mechanisms in a laser," Phys. Rev. A 75, 063810 (2007).
[CrossRef]

R. Weill, B. Vodonos, A. Gordon, O. Gat, and B. Fischer, "Statistical light-mode dynamics of multipulse passive mode locking," Phys. Rev. E 76, 031112 (2007).
[CrossRef]

O. Y. Schwartz and S. K. Turitsyn, "Multiple-period dispersion-managed solitons," Phys. Rev. A 76, 043819 (2007).
[CrossRef]

Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, "High-power all-normal-dispersion femtosecond pulse generation from an Yb-doped large-mode-area microstructure fiber laser," Opt.Lett. 32, 2738-2740 (2007).
[CrossRef] [PubMed]

Y. Logvin and H. Anis, "Similariton pulse instability in mode-locked Yb-doped fiber laser in the vicinity of zero cavity dispersion," Opt. Express 15, 13607-13612 (2007)
[CrossRef] [PubMed]

C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, "Parabolic pulse generation with active or passive dispersion decreasing optical fibers," Opt. Express 15, 15824-15835 (2007).
[CrossRef] [PubMed]

2006

B. Ortaç, A. Hideur, M. Brunel, C. Chédot, J. Limpert, A. Tünnermann, and F. Ö. Ilday, "Generation of parabolic bound pulses from a Yb-fiber laser," Opt. Express 14, 6075-6083 (2006).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1778-1790 (2006).
[CrossRef]

J. N. Kutz, "Mode-Locked Soliton Lasers," SIAM Rev. 48, 629-678 (2006).
[CrossRef]

2005

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

2004

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, "Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser," Phys. Rev. E 70, 066612 (2004).
[CrossRef]

F. O. Ilday, J. R. Buckley, W. G. Clark, and F.W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

2000

M. E. Fermann, V. I. Kruglov, B.C. Thomsen, J.M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

1997

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783-4796 (1997).
[CrossRef]

1993

1992

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Self- starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation," Electron. Lett. 28, 1391-1393 (1992).
[CrossRef]

W. van Saarloos and P. C. Hohenberg, "Fronts, pulses, sources and sinks in generalized complex Ginzburg- Landau equations," Physica D 56, 303-367 (1992).
[CrossRef]

1991

Afanasjev, V. V.

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783-4796 (1997).
[CrossRef]

Akhmediev, N.

N. Akhmediev, J.M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124-3128 (2008).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, "Dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
[CrossRef]

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, "Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser," Phys. Rev. E 70, 066612 (2004).
[CrossRef]

Akhmediev, N. N.

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783-4796 (1997).
[CrossRef]

Anis, H.

Ankiewicz, A.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, "Dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
[CrossRef]

Apolonski, A.

V. L. Kalashnikov, A. Fernández, and A. Apolonski, "High-order dispersion in chirped-pulse oscillators," Opt. Express 16, 4206-4216 (2008).
[CrossRef] [PubMed]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Bale, G.

Barviau, B.

Bélanger, P.

Brunel, M.

Buckley, J. R.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F.W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Cabasse,

Chang, W.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, "Dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
[CrossRef]

Chédot, C.

Chernykh, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Chong,

Chong, A.

F. W. Wise, A. Chong, and W. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser Photonics Rev. 2, 58-73 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 023814 (2008).
[CrossRef]

Clark, W. G.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F.W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Dudley, J.M.

M. E. Fermann, V. I. Kruglov, B.C. Thomsen, J.M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Engelbrecht, M.

Fermann, M. E.

M. E. Fermann, V. I. Kruglov, B.C. Thomsen, J.M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Fernandez, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Fernández, A.

Finot, C.

Fischer, B.

R. Weill, B. Vodonos, A. Gordon, O. Gat, and B. Fischer, "Statistical light-mode dynamics of multipulse passive mode locking," Phys. Rev. E 76, 031112 (2007).
[CrossRef]

Fujimoto, J. G.

Gat, O.

R. Weill, B. Vodonos, A. Gordon, O. Gat, and B. Fischer, "Statistical light-mode dynamics of multipulse passive mode locking," Phys. Rev. E 76, 031112 (2007).
[CrossRef]

Gordon, A.

R. Weill, B. Vodonos, A. Gordon, O. Gat, and B. Fischer, "Statistical light-mode dynamics of multipulse passive mode locking," Phys. Rev. E 76, 031112 (2007).
[CrossRef]

Graf, R.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Grapinet, M.

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, "Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser," Phys. Rev. E 70, 066612 (2004).
[CrossRef]

Grelu, P.

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, "Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser," Phys. Rev. E 70, 066612 (2004).
[CrossRef]

Grelu, Ph.

N. Akhmediev, J.M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124-3128 (2008).
[CrossRef]

Guryanov, A.

Haboucha, A.

M. Salhi, A. Haboucha, H. Leblond, and F. Sanchez, "Theoretical study of figure-eight all-fiber laser," Phys. Rev. A 77, 033828 (2008).
[CrossRef]

Harvey, J. D.

M. E. Fermann, V. I. Kruglov, B.C. Thomsen, J.M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Haus, H. A.

Haxsen, F.

Hideur, A.

Hohenberg, P. C.

W. van Saarloos and P. C. Hohenberg, "Fronts, pulses, sources and sinks in generalized complex Ginzburg- Landau equations," Physica D 56, 303-367 (1992).
[CrossRef]

Ilday, F. O.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F.W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Ilday, F. Ö.

Ippen, E. P.

Kalashnikov, V. L.

V. L. Kalashnikov, A. Fernández, and A. Apolonski, "High-order dispersion in chirped-pulse oscillators," Opt. Express 16, 4206-4216 (2008).
[CrossRef] [PubMed]

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Karow, H.

Kracht, D.

Kruglov, V. I.

M. E. Fermann, V. I. Kruglov, B.C. Thomsen, J.M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Kutz, J. N.

Leblond, H.

M. Salhi, A. Haboucha, H. Leblond, and F. Sanchez, "Theoretical study of figure-eight all-fiber laser," Phys. Rev. A 77, 033828 (2008).
[CrossRef]

Lecaplain,

Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, "High-power all-normal-dispersion femtosecond pulse generation from an Yb-doped large-mode-area microstructure fiber laser," Opt.Lett. 32, 2738-2740 (2007).
[CrossRef] [PubMed]

Limpert, J.

Lin, A.

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, "Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation," Laser Phys. 18, 1357-1361 (2008).
[CrossRef]

Liu, X.

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, "Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation," Laser Phys. 18, 1357-1361 (2008).
[CrossRef]

Logvin, Y.

Lu, K.

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, "Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation," Laser Phys. 18, 1357-1361 (2008).
[CrossRef]

Matsas, V. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Self- starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation," Electron. Lett. 28, 1391-1393 (1992).
[CrossRef]

Mihalache,

Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, "Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation," Phys. Rev. A 75, 033811 (2007).
[CrossRef]

Millot, G.

Morgner, U.

Naumov, S.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Nelson, L. E.

Newson, T. P.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Self- starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation," Electron. Lett. 28, 1391-1393 (1992).
[CrossRef]

Olivier, M.

Ortaç, B.

Payne, D. N.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Self- starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation," Electron. Lett. 28, 1391-1393 (1992).
[CrossRef]

Piché, M.

Podivilov, E.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Prochnow, O.

Qian, L. J.

Y. Tang, L. M. Zhao, G. Q. Xie and L. J. Qian, "Coexistence and competition between different soliton- shaping mechanisms in a laser," Phys. Rev. A 75, 063810 (2007).
[CrossRef]

Renninger, W.

F. W. Wise, A. Chong, and W. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser Photonics Rev. 2, 58-73 (2008).
[CrossRef]

Renninger, W. H.

W. H. Renninger, A. Chong, and F. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 023814 (2008).
[CrossRef]

Richardson, D. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Self- starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation," Electron. Lett. 28, 1391-1393 (1992).
[CrossRef]

Ruehl,

Ruehl, D. Wandt, U. Morgner, D. Kracht, "Normal dispersive ultrafast fiber oscillators," IEEE J. Sel. Top. Quantum Electro. 15, 170-181 (2009).
[CrossRef]

Ruehl, A.

Salhi, M.

M. Salhi, A. Haboucha, H. Leblond, and F. Sanchez, "Theoretical study of figure-eight all-fiber laser," Phys. Rev. A 77, 033828 (2008).
[CrossRef]

Sanchez, F.

M. Salhi, A. Haboucha, H. Leblond, and F. Sanchez, "Theoretical study of figure-eight all-fiber laser," Phys. Rev. A 77, 033828 (2008).
[CrossRef]

Schultz, M.

Schwartz, O. Y.

O. Y. Schwartz and S. K. Turitsyn, "Multiple-period dispersion-managed solitons," Phys. Rev. A 76, 043819 (2007).
[CrossRef]

Shu, C.

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, "Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation," Laser Phys. 18, 1357-1361 (2008).
[CrossRef]

Soto-Crespo, J. M.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, "Dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
[CrossRef]

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, "Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser," Phys. Rev. E 70, 066612 (2004).
[CrossRef]

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783-4796 (1997).
[CrossRef]

Soto-Crespo, J.M.

N. Akhmediev, J.M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124-3128 (2008).
[CrossRef]

Sysoliatin, A.

Tamura, K.

Tang, D. Y.

L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1778-1790 (2006).
[CrossRef]

Tang, Y.

Y. Tang, L. M. Zhao, G. Q. Xie and L. J. Qian, "Coexistence and competition between different soliton- shaping mechanisms in a laser," Phys. Rev. A 75, 063810 (2007).
[CrossRef]

Thomsen, B.C.

M. E. Fermann, V. I. Kruglov, B.C. Thomsen, J.M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Tünnermann, A.

Turitsyn, S. K.

O. Y. Schwartz and S. K. Turitsyn, "Multiple-period dispersion-managed solitons," Phys. Rev. A 76, 043819 (2007).
[CrossRef]

van Saarloos, W.

W. van Saarloos and P. C. Hohenberg, "Fronts, pulses, sources and sinks in generalized complex Ginzburg- Landau equations," Physica D 56, 303-367 (1992).
[CrossRef]

Vodonos, B.

R. Weill, B. Vodonos, A. Gordon, O. Gat, and B. Fischer, "Statistical light-mode dynamics of multipulse passive mode locking," Phys. Rev. E 76, 031112 (2007).
[CrossRef]

Wabnitz, S.

C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, "Parabolic pulse generation with active or passive dispersion decreasing optical fibers," Opt. Express 15, 15824-15835 (2007).
[CrossRef] [PubMed]

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783-4796 (1997).
[CrossRef]

Wandt, D.

Wang, L.

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, "Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation," Laser Phys. 18, 1357-1361 (2008).
[CrossRef]

Wang, T.

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, "Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation," Laser Phys. 18, 1357-1361 (2008).
[CrossRef]

Weill, R.

R. Weill, B. Vodonos, A. Gordon, O. Gat, and B. Fischer, "Statistical light-mode dynamics of multipulse passive mode locking," Phys. Rev. E 76, 031112 (2007).
[CrossRef]

Wise, F.

W. H. Renninger, A. Chong, and F. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 023814 (2008).
[CrossRef]

Wise, F. W.

F. W. Wise, A. Chong, and W. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser Photonics Rev. 2, 58-73 (2008).
[CrossRef]

Wise, F.W.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F.W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Wu, J.

L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1778-1790 (2006).
[CrossRef]

Xie, G. Q.

Y. Tang, L. M. Zhao, G. Q. Xie and L. J. Qian, "Coexistence and competition between different soliton- shaping mechanisms in a laser," Phys. Rev. A 75, 063810 (2007).
[CrossRef]

Zhang, T.

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, "Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation," Laser Phys. 18, 1357-1361 (2008).
[CrossRef]

Zhao, L. M.

Y. Tang, L. M. Zhao, G. Q. Xie and L. J. Qian, "Coexistence and competition between different soliton- shaping mechanisms in a laser," Phys. Rev. A 75, 063810 (2007).
[CrossRef]

L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1778-1790 (2006).
[CrossRef]

Zhao, W.

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, "Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation," Laser Phys. 18, 1357-1361 (2008).
[CrossRef]

Electron. Lett.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, "Self- starting passively mode-locked fiber ring soliton laser exploiting nonlinear polarization rotation," Electron. Lett. 28, 1391-1393 (1992).
[CrossRef]

IEEE J. Sel. Top. Quantum Electro.

Ruehl, D. Wandt, U. Morgner, D. Kracht, "Normal dispersive ultrafast fiber oscillators," IEEE J. Sel. Top. Quantum Electro. 15, 170-181 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Laser Photonics Rev.

F. W. Wise, A. Chong, and W. Renninger, "High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion," Laser Photonics Rev. 2, 58-73 (2008).
[CrossRef]

Laser Phys.

X. Liu, T. Wang, C. Shu, L. Wang, A. Lin, K. Lu, T. Zhang, and W. Zhao, "Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation," Laser Phys. 18, 1357-1361 (2008).
[CrossRef]

New J. Phys.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, "Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment," New J. Phys. 7, 217 (2005).
[CrossRef]

Opt. Express

V. L. Kalashnikov, A. Fernández, and A. Apolonski, "High-order dispersion in chirped-pulse oscillators," Opt. Express 16, 4206-4216 (2008).
[CrossRef] [PubMed]

P. Bélanger, "Stable operation of mode-locked fiber lasers: similariton regime," Opt. Express 15, 11033-11041 (2007).
[CrossRef] [PubMed]

Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, "Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion," Opt. Express 16, 19322-19329 (2008).
[CrossRef]

M. Olivier and M. Piché, "Origin of the bound states of pulses in the stretched-pulse fiber laser," Opt. Express 17, 405-418 (2009).
[CrossRef] [PubMed]

F. Haxsen, A. Ruehl, M. Engelbrecht, D. Wandt, U. Morgner, and D. Kracht, "Stretched-pulse operation of a thulium-doped fiber laser," Opt. Express 16, 20471-20476 (2008).
[CrossRef] [PubMed]

M. Schultz, H. Karow, O. Prochnow, D. Wandt, U. Morgner, and D. Kracht, "All-fiber ytterbium femtosecond laser without dispersion compensation," Opt. Express 16, 19562-19567 (2008)
[CrossRef] [PubMed]

Y. Logvin and H. Anis, "Similariton pulse instability in mode-locked Yb-doped fiber laser in the vicinity of zero cavity dispersion," Opt. Express 15, 13607-13612 (2007)
[CrossRef] [PubMed]

B. Ortaç, A. Hideur, M. Brunel, C. Chédot, J. Limpert, A. Tünnermann, and F. Ö. Ilday, "Generation of parabolic bound pulses from a Yb-fiber laser," Opt. Express 14, 6075-6083 (2006).
[CrossRef] [PubMed]

C. Finot, B. Barviau, G. Millot, A. Guryanov, A. Sysoliatin, and S. Wabnitz, "Parabolic pulse generation with active or passive dispersion decreasing optical fibers," Opt. Express 15, 15824-15835 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Opt.Lett.

Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, "High-power all-normal-dispersion femtosecond pulse generation from an Yb-doped large-mode-area microstructure fiber laser," Opt.Lett. 32, 2738-2740 (2007).
[CrossRef] [PubMed]

Phys. Lett. A

N. Akhmediev, J.M. Soto-Crespo, and Ph. Grelu, "Roadmap to ultra-short record high-energy pulses out of laser oscillators," Phys. Lett. A 372, 3124-3128 (2008).
[CrossRef]

Phys. Rev. A

O. Y. Schwartz and S. K. Turitsyn, "Multiple-period dispersion-managed solitons," Phys. Rev. A 76, 043819 (2007).
[CrossRef]

W. H. Renninger, A. Chong, and F. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 023814 (2008).
[CrossRef]

M. Salhi, A. Haboucha, H. Leblond, and F. Sanchez, "Theoretical study of figure-eight all-fiber laser," Phys. Rev. A 77, 033828 (2008).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, "Dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
[CrossRef]

Mihalache, D. Mazilu, F. Lederer, H. Leblond, and B. A. Malomed, "Stability of dissipative optical solitons in the three-dimensional cubic-quintic Ginzburg-Landau equation," Phys. Rev. A 75, 033811 (2007).
[CrossRef]

Y. Tang, L. M. Zhao, G. Q. Xie and L. J. Qian, "Coexistence and competition between different soliton- shaping mechanisms in a laser," Phys. Rev. A 75, 063810 (2007).
[CrossRef]

Phys. Rev. E

Komarov and F. Sanchez, "Structural dissipative solitons in passive mode-locked fiber lasers," Phys. Rev. E 77, 066201 (2008).
[CrossRef]

J. M. Soto-Crespo, M. Grapinet, P. Grelu, and N. Akhmediev, "Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser," Phys. Rev. E 70, 066612 (2004).
[CrossRef]

J. M. Soto-Crespo, N. N. Akhmediev, V. V. Afanasjev, and S. Wabnitz, "Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion," Phys. Rev. E 55, 4783-4796 (1997).
[CrossRef]

R. Weill, B. Vodonos, A. Gordon, O. Gat, and B. Fischer, "Statistical light-mode dynamics of multipulse passive mode locking," Phys. Rev. E 76, 031112 (2007).
[CrossRef]

Phys. Rev. Lett.

F. O. Ilday, J. R. Buckley, W. G. Clark, and F.W. Wise, "Self-Similar Evolution of Parabolic Pulses in a Laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

M. E. Fermann, V. I. Kruglov, B.C. Thomsen, J.M. Dudley, and J. D. Harvey, "Self-Similar Propagation and Amplification of Parabolic Pulses in Optical Fibers," Phys. Rev. Lett. 84, 6010 (2000).
[CrossRef] [PubMed]

Physica D

W. van Saarloos and P. C. Hohenberg, "Fronts, pulses, sources and sinks in generalized complex Ginzburg- Landau equations," Physica D 56, 303-367 (1992).
[CrossRef]

SIAM Rev.

J. N. Kutz, "Mode-Locked Soliton Lasers," SIAM Rev. 48, 629-678 (2006).
[CrossRef]

Other

N. Akhmediev and A. Ankiewics, Eds. Dissipative Solitons (Springer, Berlin, 2005).
[CrossRef]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Burlington, MA, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Qualitative depictions of three different dispersion maps. (a) the net cavity GVD βnet≈0, (b) βnet≈0.01 ps2, and (c) βnet≈1 ps2.

Fig. 2.
Fig. 2.

Schematic diagram of DS laser cavity. PC: polarization controller; PS-ISO: polarization-sensitive isolator; WDM: wavelength-division-multiplexed; LD: laser diode; OSA: optical spectrum analyzer.

Fig. 3.
Fig. 3.

(a) Optical spectra and (b) corresponding oscilloscope trace at the pump power Pp =71 mW. In the top plot, the left y-axis is the logarithmic scale and the right one is the linear scale.

Fig. 4.
Fig. 4.

Autocorrelation trace of the mode-locked pulses at pump power Pp =71, 120, 122, and 130 mW, respectively.

Fig. 5.
Fig. 5.

Optical spectra of the DSs at the pump power (a) Pp =120 mW, (b) Pp =122 mW, and (c) Pp =130 mW.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

uz=(gδ)u+(gτ+iD2)2ut2+(β+iγ)u2uμ u4 u ,
u(t,z)=ηB+cosh(ωt) exp [iAln(B+cosh(ωt))+iϕ] .

Metrics