Abstract

We report on a passively mode-locked erbium-doped fiber laser, using a high nonlinear modulation depth saturable absorber mirror, in a Fabry-Perot cavity. A segment of dispersion compensation fiber is added inside the cavity in order to build a high-positive dispersion regime. The setup produced highly chirped pulses with an energy of 1.8 nJ at a repetition rate of 33.5 MHz. Numerical simulations accurately reflect our experimental results and show that pulse-shaping in this laser could be interpreted as producing ‘dissipative solitons’.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, "dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
    [CrossRef]
  2. B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, "High-energy femtosecond Yb-doped dispersion compensation free fiber laser," Opt. Express 15, 10725-10732 (2007).
    [CrossRef] [PubMed]
  3. C. Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, "High-power all-normal-dispersion femtosecond pulse generation from an Yb-doped large-mode-area microstructure fiber laser," Opt. Lett. 32, 2738-2740 (2007).
    [CrossRef] [PubMed]
  4. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
    [CrossRef] [PubMed]
  5. T. Schreiber, B. Ortaç, J. Limpert, and A. Tünnermann, "On the study of pulse evolution in ultra-short pulse mode-locked fiber lasers by numerical simulations," Opt. Express 15, 8252-8262 (2007).
    [CrossRef] [PubMed]
  6. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser," Opt. Express 14, 10095-10100 (2006).
    [CrossRef] [PubMed]
  7. G. Bale, J. N Kutz, A. Chong, W. H. Renninger, and F. W. Wise, "Spectral filtering for high-energy mode- locking in normal dispersion fiber lasers," J. Opt. Soc. Am. B 251763-1768 (2008).
    [CrossRef]
  8. Ruehl, V. Kuhn, D. Wandt, and D. Kracht, "Normal dispersion erbium-doped fiber laser with pulse energies above 10 nJ," Opt. Express 16, 3130-3135 (2008).
    [CrossRef] [PubMed]
  9. R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40 893-899 (2004).
    [CrossRef]
  10. Chong, W. H. Renninger, and F. W. Wise, "All-normal-dispersion femtosecond fiber laser with pulse energies above 20 nJ," Opt. Lett. 32, 2408-2410 (2007).
    [CrossRef] [PubMed]
  11. Chong, W. H. Renninger, and F. Wise, "Properties of normal-dispersion femtosecond fiber lasers," J. Opt. Soc. Am. B 25, 140-148 (2008).
    [CrossRef]
  12. J. D. Moores, "On the Ginzburg-Landau laser mode locking model with fifth-order saturable absorber term," Opt. Commun. 96, 65-69 (1993).
    [CrossRef]
  13. W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 023814 (2008).
    [CrossRef]
  14. N. Akhmediev and A. Ankiewicz, "Dissipative Solitons: From Optics to Biology and Medicine," N. Akhmediev and A. Ankiewicz, ed., (Springer, Berlin, 2008).
  15. L. M. Zhao, D. Y. Tang, and J. Wu, "Gain-guided soliton in a positive group-dispersion fiber laser," Opt. Lett. 31, 1788-1790 (2006).
    [CrossRef] [PubMed]
  16. L. M. Zhao, D. Y. Tang, T. H. Cheng, and C. Lu, "Gain-guided soliton in dispersion-managed fiber lasers with large net cavity dispersion," Opt. Lett. 31, 2957-2959 (2006).
    [CrossRef] [PubMed]
  17. L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Tam, and C. Lu, "Dynamics of gain-guided solitons in an all- normal-dispersion fiber laser," Opt. Lett. 32, 1806-1808 (2007).
    [CrossRef] [PubMed]
  18. Cabasse, G. Martel, A. Hideur, B. Ortaç, and J. Limpert, "Dissipative solitons in a passively mode-locked erbium-doped fiber laser with strong normal dispersion," Opt. Express 16, 19322-19329 (2008).
    [CrossRef]
  19. Massoubre, J.L. Oudar, J. Fantome, S. Pitois, G.Millot, J.Decobert, and J. Landreau, "All-optical extinction-ratio enhancement of a 160 GHz pulse train by a saturable absorber vertical microcavity," Opt. Lett. 31, 537-539 (2006).
    [CrossRef] [PubMed]
  20. J. W. Lou, M. Currie, and F. K. Fatemi, "Experimental measurements of solitary pulse characteristics from an all-normal-dispersion Yb-doped fiber laser," Opt. Express 15, 4960-4965 (2007).
    [CrossRef] [PubMed]
  21. N. N. Akhmediev, A. Ankiewicz, M. J. Lederer, and B. Luther-Davies, "Ultrashort pulses generated by mode-locked lasers with either a slow or a fast saturable-absorber response," Opt. Lett. 23, 280-282 (1998).
    [CrossRef]

2008 (6)

2007 (6)

2006 (4)

2004 (2)

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40 893-899 (2004).
[CrossRef]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

1998 (1)

1993 (1)

J. D. Moores, "On the Ginzburg-Landau laser mode locking model with fifth-order saturable absorber term," Opt. Commun. 96, 65-69 (1993).
[CrossRef]

Akhmediev, N.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, "dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
[CrossRef]

Akhmediev, N. N.

Ankiewicz, A.

Bale, G.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Cabasse,

Chang, W.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, "dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
[CrossRef]

Chédot, C.

Cheng, T. H.

Chong,

Chong, A.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Currie, M.

Fatemi, F. K.

Herda, R.

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40 893-899 (2004).
[CrossRef]

Hideur, A.

Ilday, F. Ö.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Kutz, J. N

Lecaplain, C.

Lederer, M. J.

Limpert, J.

Lou, J. W.

Lu, C.

Luther-Davies, B.

Massoubre,

Moores, J. D.

J. D. Moores, "On the Ginzburg-Landau laser mode locking model with fifth-order saturable absorber term," Opt. Commun. 96, 65-69 (1993).
[CrossRef]

Okhotnikov, O. G.

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40 893-899 (2004).
[CrossRef]

Ortaç, B.

Renninger, W. H.

Ruehl,

Schmidt, O.

Schreiber, T.

Soto-Crespo, J. M.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, "dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
[CrossRef]

Tam, T. H.

Tang, D. Y.

Tünnermann, A.

Wise, F. W.

G. Bale, J. N Kutz, A. Chong, W. H. Renninger, and F. W. Wise, "Spectral filtering for high-energy mode- locking in normal dispersion fiber lasers," J. Opt. Soc. Am. B 251763-1768 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 023814 (2008).
[CrossRef]

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Wu, J.

Zhang, H.

Zhao, L. M.

IEEE J. Quantum Electron. (1)

R. Herda and O. G. Okhotnikov, "Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror," IEEE J. Quantum Electron. 40 893-899 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (1)

J. D. Moores, "On the Ginzburg-Landau laser mode locking model with fifth-order saturable absorber term," Opt. Commun. 96, 65-69 (1993).
[CrossRef]

Opt. Express (6)

Opt. Lett. (7)

Phys. Rev. A (2)

W. H. Renninger, A. Chong, and F. W. Wise, "Dissipative solitons in normal-dispersion fiber lasers," Phys. Rev. A 77, 023814 (2008).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, "dissipative soliton resonances," Phys. Rev. A 78, 023830 (2008).
[CrossRef]

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, "Self-similar evolution of parabolic pulses in a laser," Phys. Rev. Lett. 92, 213902 (2004).
[CrossRef] [PubMed]

Other (1)

N. Akhmediev and A. Ankiewicz, "Dissipative Solitons: From Optics to Biology and Medicine," N. Akhmediev and A. Ankiewicz, ed., (Springer, Berlin, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Experimental setup. WDM: 980/1550 nm multiplexer; L1, L2, L3: coupling lenses; 50/50: coupler; SAM: saturable absorber mirror

Fig. 2.
Fig. 2.

(a) Structure and (b) saturable reflectivity of the SAM used in this experiment.

Fig. 3.
Fig. 3.

(a) Autocorrelation trace of the output pulse in a linear scale. (b) Optical spectrum in a linear scale (inset: in a logarithmic scale).

Fig. 4.
Fig. 4.

(a) Autocorrelation trace of the dechirped pulse. (b) Radiofrequency spectrum recorded at the fundamental frequency of 33 MHz. Resolution bandwidth is 300 Hz.

Fig. 5.
Fig. 5.

Intra-cavity pulse evolution in the temporal and spectral (a) and energetic (b) domains. (c) Temporal intensity profile (black curve) and instantaneous frequency (red curve) of the output pulses before and after (inset) extra-cavity dechirping. (d) Output power spectrum (solid curve) and simulated gain profile (dashed curve).

Fig. 6.
Fig. 6.

Similar characteristics as for Figs 5(a)-5(d) but with a cavity made up of only all-normal fibers.

Tables (1)

Tables Icon

Table 1. Intra-cavity fiber parameter used for the simulations

Metrics