Abstract

We demonstrate high power high efficiency (0.3 W) low noise single frequency operation of a compact extended–cavity surface–emitting–semiconductor–laser exhibiting a continuous tunability over 0.84 THz with high beam quality. We took advantage of thermal lens–based stability to develop a short (<3 mm) plano–plano external cavity without any intracavity filter. The structure is optically pumped by a 1W commercial 830 nm multimode diode laser. No heat management was required. We measured a low divergence circular TEM00 beam at the diffraction limit (M2<1.05) with a linear light polarization (>37 dB). The side mode suppression ratio is 60 dB. The free running laser linewidth is 850 kHz limited by pump induced thermal fluctuations. Thanks to this high-Q external cavity approach, the frequency noise is low and the dynamics is in the relaxation-oscillation-free regime, exhibiting a low intensity noise, with a cutoff frequency ~250MHz above which the shot noise level is reached. We show that pump properties define the cavity design and laser coherence.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
    [CrossRef]
  2. A. Garnache,  et al., "2-2.7mm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External-cavity VCSELs, DFB," in Proc. SPIE Photonics Europe, Semiconductor lasers and laser dynamics, vol. 6184, p. 61840N (2006).
  3. A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3mm," IEEE Photon. Technol. Lett. 17, 128-134 (2005).
    [CrossRef]
  4. A. Garnache, A. Ouvrard, and D. Romanini, "Single-Frequency operation of External-Cavity VCSELs: Nonlinear multimode temporal dynamics and quantum limit." Opt. Express 15, 9403-9417 (2007).
    [CrossRef] [PubMed]
  5. R. H. Abram, K. S. Gardner, E. Riis, and A. I. Ferguson, "Narrow linewidth operation of a tunable optically pumped semiconductor laser," Opt. Express 12, 5434-5439 (2004).
    [CrossRef] [PubMed]
  6. H. Lindberg, A. Larsson, and M. Strassner, "Single-frequency operation of a high-power, long-wavelength semiconductor disk laser," Opt. Lett. 30, 2260-2262 (2005).
    [CrossRef] [PubMed]
  7. M. Jacquemet,  et al., "Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling," Appl. Phys. B 86, 503-510 (2006).
    [CrossRef]
  8. A. Kemp, A. M. J. Hastie, S. Smith, J.-M. Hopkins, S. Calvez, G. Valentine, M. Dawson, and D. Burns, "Thermal lensing, thermal management and transverse mode control in microchip VECSELs," Appl. Phys. B (2006).
    [CrossRef]
  9. A. E. Siegman, Lasers (University Science Books, Mill Valley (California), 1986).
  10. K. Petermann, Laser diode modulation and noise, ADOP (Kluwer Academic, Tokyo, 1988).
    [CrossRef]

2007 (1)

2006 (1)

M. Jacquemet,  et al., "Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling," Appl. Phys. B 86, 503-510 (2006).
[CrossRef]

2005 (2)

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3mm," IEEE Photon. Technol. Lett. 17, 128-134 (2005).
[CrossRef]

H. Lindberg, A. Larsson, and M. Strassner, "Single-frequency operation of a high-power, long-wavelength semiconductor disk laser," Opt. Lett. 30, 2260-2262 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Abram, R. H.

Albrecht, T.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Brick, P.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Cerutti, L.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3mm," IEEE Photon. Technol. Lett. 17, 128-134 (2005).
[CrossRef]

Ferguson, A. I.

Gardner, K. S.

Garnache, A.

A. Garnache, A. Ouvrard, and D. Romanini, "Single-Frequency operation of External-Cavity VCSELs: Nonlinear multimode temporal dynamics and quantum limit." Opt. Express 15, 9403-9417 (2007).
[CrossRef] [PubMed]

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3mm," IEEE Photon. Technol. Lett. 17, 128-134 (2005).
[CrossRef]

Genty, F.

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3mm," IEEE Photon. Technol. Lett. 17, 128-134 (2005).
[CrossRef]

Jacquemet, M.

M. Jacquemet,  et al., "Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling," Appl. Phys. B 86, 503-510 (2006).
[CrossRef]

Larsson, A.

Lindberg, H.

Luft, J.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Lutgen, S.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Ouvrard, A.

A. Garnache, A. Ouvrard, and D. Romanini, "Single-Frequency operation of External-Cavity VCSELs: Nonlinear multimode temporal dynamics and quantum limit." Opt. Express 15, 9403-9417 (2007).
[CrossRef] [PubMed]

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3mm," IEEE Photon. Technol. Lett. 17, 128-134 (2005).
[CrossRef]

Reill, W.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Riis, E.

Romanini, D.

A. Garnache, A. Ouvrard, and D. Romanini, "Single-Frequency operation of External-Cavity VCSELs: Nonlinear multimode temporal dynamics and quantum limit." Opt. Express 15, 9403-9417 (2007).
[CrossRef] [PubMed]

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3mm," IEEE Photon. Technol. Lett. 17, 128-134 (2005).
[CrossRef]

Spath, W.

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

Strassner, M.

Appl. Phys. B (1)

M. Jacquemet,  et al., "Single-Frequency High-Power CW Vertical External Cavity Surface Emitting Semiconductor Laser at 1003 nm and 501nm by Intracavity Frequency Doubling," Appl. Phys. B 86, 503-510 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

S. Lutgen, T. Albrecht, P. Brick, W. Reill, J. Luft, and W. Spath, "8-W High-Efficiency Continuous-Wave Semiconductor Disk Laser at 1000 nm," Appl. Phys. Lett. 82, 3620-3622 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

A. Ouvrard, A. Garnache, L. Cerutti, F. Genty, and D. Romanini, "Single Frequency Tunable Sb-based VCSELs emitting at 2.3mm," IEEE Photon. Technol. Lett. 17, 128-134 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (4)

A. Garnache,  et al., "2-2.7mm single frequency tunable Sb-based lasers operating in CW at RT: Microcavity and External-cavity VCSELs, DFB," in Proc. SPIE Photonics Europe, Semiconductor lasers and laser dynamics, vol. 6184, p. 61840N (2006).

A. Kemp, A. M. J. Hastie, S. Smith, J.-M. Hopkins, S. Calvez, G. Valentine, M. Dawson, and D. Burns, "Thermal lensing, thermal management and transverse mode control in microchip VECSELs," Appl. Phys. B (2006).
[CrossRef]

A. E. Siegman, Lasers (University Science Books, Mill Valley (California), 1986).

K. Petermann, Laser diode modulation and noise, ADOP (Kluwer Academic, Tokyo, 1988).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

a) Reflectivity and photoluminescence of the 1/2-VCSEL structure grown on GaAs emitting at 1µm. b) High power single frequency tunable VeCSEL design

Fig. 2.
Fig. 2.

a) Radial pump profile (experimental), temperature profile (FEMLAB simulation), and induced index profile (parabolic fit) in the 1/2-VCSEL. b) Thermal lens-based cavity stability: experimental/theoretical waist (@1/e 2) on the 1/2-VCSEL varying with (L ,Pp ).

Fig. 3.
Fig. 3.

a) Single frequency VeCSEL output power in cw at RT. Conversion efficiency ~0.3W/A. b) Circular far field transverse distribution close to diffraction limit at high power.

Fig. 4.
Fig. 4.

a) Laser spectrum at high power recorded with an optical spectrum analyzer (15 GHz resolution). Solid vertical lines show the longitudinal mode positions. b) Laser frequency tunability (vs PZT voltage) recorded through a GaAs Fabry–Perot etalon (93 GHz FSR).

Fig. 5.
Fig. 5.

a) Pump RIN p , VeCSEL RIN and theoretical RIN transfer function spectra. The pump RIN p spectrum is flat below 100 kHz down to 100 Hz. b) Frequency noise spectral density (experiment and theory) originating from pump noise (normalized to L -2).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Flens wp22ln(2)Lμc (RthPpdndT)1 πln(2)3(LμcdndT)1wp3κηPp40mm
L<c4πln(2)3(TocfcthΓg2)13c4(ρCTln(2))13(wp2TocκΓg2)133mm
Δ νrms ΓT RINpPp2Rth2×fcth c2πln(2)ρCTdndTLμcλ η×RINpPpwp2Lκ

Metrics