Abstract

We investigate the properties of a self-pulsating fiber cavity based on cascaded regeneration. The mechanisms that govern the number of oscillating pulses in the cavity, the pulse peak power, the pulse width, the wavelength tunability as well as the generation of sub-picosecond pulses are identified, analyzed and quantified. We find that the described self-pulsating cavity enables the oscillation of quasi transform-limited pulses with a pulsewidth of 4.8 ps at 1540.0 nm when using 0.4 nm non-Gaussian bandpass filters. Sub-picosecond pulses with an autocorrelation width of 471 fs are generated from the same self-pulsating source with modified bandpass filters and the addition of a chromatic dispersion compensator. The number of eigenpulses that oscillate simultaneously in the cavity can be adjusted from 0 up to 29,500 with proper cavity adjustment. This source has dual-wavelength output and can be tuned throughout the gain band of the amplifiers.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Kieu and F. W. Wise, "All-fiber normal-dispersion femtosecond laser," Opt. Express 16, 11453-11458 (2008).
    [CrossRef] [PubMed]
  2. C. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005).
    [CrossRef] [PubMed]
  3. B. Ortaç, M. Plötner, J. Limpert, and A. Tünnermann, "Self-starting passively mode-locked chirped-pulse fiber laser," Opt. Express 15, 16794-16799 (2007).
    [CrossRef] [PubMed]
  4. M. E. Fermann, L.-M. Yang, M. L. Stock, and M. J. Andrejco, "Environmentally stable Kerr-type mode-locked erbium fiber laser producing 360-fs pulses," Opt. Lett. 19, 43-45 (1994).
    [CrossRef] [PubMed]
  5. F. Ö Ilday, J. R. Buckley, H. Lim, F. W. Wise, and W. G. Clark, "Generation of 50-fs, 5-nJ pulses at 1.03 μm from a wave-breaking-free fiber laser," Opt. Lett. 28, 1365-1367 (2003).
    [CrossRef]
  6. O. Prochnow, A. Ruehl, M. Schultz, D. Wandt, and D. Kracht, "All-fiber similariton laser at 1 μm without dispersion compensation," Opt. Express 15, 6889-6893 (2007).
    [CrossRef] [PubMed]
  7. X. S. Yao, L. Davis, and L. Maleki, "Coupled optoelectronic oscillators for generating both RF signal and optical Pulses," J. Lightwave Technol. 18, 73-78 (2000).
    [CrossRef]
  8. J. Lasri, P. Devgan, R. Tang, and P. Kumar, "Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10 GHz or higher) optical pulses," Opt. Express 11, 1430-1435 (2003).
    [CrossRef] [PubMed]
  9. W. W. Tang and C. Shu, "Self-starting picosecond optical pulse source using stimulated Brillouin scattering in an optical fiber," Opt. Express 13, 1328-1333 (2005).
    [PubMed]
  10. A. Avdokhin, S. Popov, and J. Taylor, "Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm," Opt. Express 11, 265-269 (2003).
    [CrossRef] [PubMed]
  11. J. W. Nicholson and M. Andrejco, "A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser," Opt. Express 14, 8160-8167 (2006).
    [CrossRef] [PubMed]
  12. Y. Zhao, S. Min, H. Wang, and S. Fleming, "High-power figure-of-eight fiber laser with passive sub-ring loops for repetition rate control," Opt. Express 14, 10475-10480 (2006).
    [CrossRef] [PubMed]
  13. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proceedings of 24th European Conference on Optical Communications, (Madrid, 1998), pp. 475-476.
  14. Q1. M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: an all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
    [CrossRef]
  15. M. Matsumoto, "Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration," Opt. Express 14, 11018-11023 (2006)
    [CrossRef] [PubMed]
  16. S. Pitois, C. Finot, and L. Provost, "Asymptotic properties of incoherent waves propagating in an all-optical regenerators line," Opt. Lett. 32, 3263-3265 (2007).
    [CrossRef] [PubMed]
  17. S. Pitois, C. Finot, L. Provost, and D. J. Richardson, "Generation of localized pulses from incoherent wave in optical fiber lines made of concatenated Mamyshev regenerators," J. Opt. Soc. Am. B 25, 1537-1547 (2008).
    [CrossRef]
  18. Q2. M. Rochette, L. R. Chen, K. Sun, and J. H.-Cordero, "Multiwavelength and tunable self-pulsating fiber cavity based on regenerative SPM spectral broadening and filtering," IEEE Photon. Technol. Lett. 20, 1497-1499 (2008).
    [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics (Academic press, San Diego, CA, 2007), Chap. 2 & Chap. 4.
  20. A. E. Siegman, Lasers (University Science books, Mill Valley, CA, 1986), Chap. 10.

2008 (3)

2007 (3)

2006 (4)

2005 (2)

2003 (3)

2000 (1)

1994 (1)

Andrejco, M.

Andrejco, M. J.

Avdokhin, A.

Chen, L. R.

Q2. M. Rochette, L. R. Chen, K. Sun, and J. H.-Cordero, "Multiwavelength and tunable self-pulsating fiber cavity based on regenerative SPM spectral broadening and filtering," IEEE Photon. Technol. Lett. 20, 1497-1499 (2008).
[CrossRef]

Davis, L.

Devgan, P.

Eggleton, B. J.

Q1. M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: an all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

Fermann, M. E.

Finot, C.

Fleming, S.

Fu, L.

Q1. M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: an all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

Hohmuth, R.

Kieu, K.

Kracht, D.

Kumar, P.

Lasri, J.

Limpert, J.

Maleki, L.

Matsumoto, M.

Min, S.

Moss, D. J.

Q1. M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: an all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

Nicholson, J. W.

Nielsen, C.

Ortaç, B.

Pitois, S.

Plötner, M.

Popov, S.

Prochnow, O.

Provost, L.

Richardson, D. J.

Richter, W.

Rochette, M.

Q2. M. Rochette, L. R. Chen, K. Sun, and J. H.-Cordero, "Multiwavelength and tunable self-pulsating fiber cavity based on regenerative SPM spectral broadening and filtering," IEEE Photon. Technol. Lett. 20, 1497-1499 (2008).
[CrossRef]

Q1. M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: an all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

Ruehl, A.

Schreiber, T.

Schultz, M.

Shu, C.

Stock, M. L.

Sun, K.

Q2. M. Rochette, L. R. Chen, K. Sun, and J. H.-Cordero, "Multiwavelength and tunable self-pulsating fiber cavity based on regenerative SPM spectral broadening and filtering," IEEE Photon. Technol. Lett. 20, 1497-1499 (2008).
[CrossRef]

Ta’eed, V.

Q1. M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: an all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

Tang, R.

Tang, W. W.

Taylor, J.

Tünnermann, A.

Wandt, D.

Wang, H.

Wise, F. W.

Yang, L.-M.

Yao, X. S.

Zhao, Y.

IEEE J. Sel. Top. Quantum Electron. (1)

Q1. M. Rochette, L. Fu, V. Ta’eed, D. J. Moss, and B. J. Eggleton, "2R optical regeneration: an all-optical solution for BER improvement," IEEE J. Sel. Top. Quantum Electron. 12, 736-744 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Q2. M. Rochette, L. R. Chen, K. Sun, and J. H.-Cordero, "Multiwavelength and tunable self-pulsating fiber cavity based on regenerative SPM spectral broadening and filtering," IEEE Photon. Technol. Lett. 20, 1497-1499 (2008).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (10)

O. Prochnow, A. Ruehl, M. Schultz, D. Wandt, and D. Kracht, "All-fiber similariton laser at 1 μm without dispersion compensation," Opt. Express 15, 6889-6893 (2007).
[CrossRef] [PubMed]

M. Matsumoto, "Efficient all-optical 2R regeneration using self-phase modulation in bidirectional fiber configuration," Opt. Express 14, 11018-11023 (2006)
[CrossRef] [PubMed]

J. Lasri, P. Devgan, R. Tang, and P. Kumar, "Self-starting optoelectronic oscillator for generating ultra-low-jitter high-rate (10 GHz or higher) optical pulses," Opt. Express 11, 1430-1435 (2003).
[CrossRef] [PubMed]

W. W. Tang and C. Shu, "Self-starting picosecond optical pulse source using stimulated Brillouin scattering in an optical fiber," Opt. Express 13, 1328-1333 (2005).
[PubMed]

A. Avdokhin, S. Popov, and J. Taylor, "Totally fiber integrated, figure-of-eight, femtosecond source at 1065 nm," Opt. Express 11, 265-269 (2003).
[CrossRef] [PubMed]

J. W. Nicholson and M. Andrejco, "A polarization maintaining, dispersion managed, femtosecond figure-eight fiber laser," Opt. Express 14, 8160-8167 (2006).
[CrossRef] [PubMed]

Y. Zhao, S. Min, H. Wang, and S. Fleming, "High-power figure-of-eight fiber laser with passive sub-ring loops for repetition rate control," Opt. Express 14, 10475-10480 (2006).
[CrossRef] [PubMed]

K. Kieu and F. W. Wise, "All-fiber normal-dispersion femtosecond laser," Opt. Express 16, 11453-11458 (2008).
[CrossRef] [PubMed]

C. Nielsen, B. Ortaç, T. Schreiber, J. Limpert, R. Hohmuth, W. Richter, and A. Tünnermann, "Self-starting self-similar all-polarization maintaining Yb-doped fiber laser," Opt. Express 13, 9346-9351 (2005).
[CrossRef] [PubMed]

B. Ortaç, M. Plötner, J. Limpert, and A. Tünnermann, "Self-starting passively mode-locked chirped-pulse fiber laser," Opt. Express 15, 16794-16799 (2007).
[CrossRef] [PubMed]

Opt. Lett. (3)

Other (3)

G. P. Agrawal, Nonlinear Fiber Optics (Academic press, San Diego, CA, 2007), Chap. 2 & Chap. 4.

A. E. Siegman, Lasers (University Science books, Mill Valley, CA, 1986), Chap. 10.

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proceedings of 24th European Conference on Optical Communications, (Madrid, 1998), pp. 475-476.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

(a). Scheme of paired regenerators in cascade. (b). Scheme of paired regenerators in closed loop. (c). Experimental setup of the self-pulsating source. (d). Spectrum representation at various point of the setup to illustrate the operation principle of the source in SP and PB regimes. O: Laser Output, M: Monitor output, C: Circulator, PSD: Power Spectral Density, FO: Filter Offset.

Fig. 2.
Fig. 2.

Experimental characterization of the EDFAs (Left figure) and the bandpass filters (Right figure). The amplifiers were characterized at 1540.0 nm. Both BPF1 and BPF2 have the same spectral profile and FWHM of 0.4 nm or 0.9 nm.

Fig. 3.
Fig. 3.

(a) Input incoherent wave. Output after circulating 40 loops when (b) EDFAs gain=120.0 and (c) EDFAs gain=105.7.

Fig. 4.
Fig. 4.

Experimentally retrieved number of pulses as a function of FO with 1 nm step size. An increase of FO leads to a decrease in the maximum number of oscillating pulses. However, the number of pulses remains relatively constant when FO is decreasing, since it is below the maximum capacity. The number of pulses increases when FO is further decreased and the cavity enters into SP regime.

Fig. 5.
Fig. 5.

(a). PTFs of HNLF+BPF when BPF bandwidth is 0.4 nm, input wavelength is 1540.0 nm, and FO=2.0 nm or 4.0 nm. (b) PTFs of HNLF+BPF when BPF bandwidth is 0.9 nm, input wavelength is 1540.0 nm, and FO=2.0 nm or 4.0 nm. (c) Simulated PTF for the opened loop from the input of A2 using the eigenpulse obtained when BPFs bandwidth=0.9 nm, λ BPF2=1540.0 nm, and FO=4.0 nm. (d) Experimental pulse profile from an oscilloscope after 13.4 dB attenuation. The insets in (a), (b), and (c) show the setup used to obtain the PTFs.

Fig. 6.
Fig. 6.

Experimental and simulated autocorrelation trace of output eigenpulses for 0.9 nm filters and 0.4 nm filters when λ BPF2=1540.0 nm and FO=4.0 nm.

Fig. 7.
Fig. 7.

(a). Simulated pulse width vs. Gaussian filter bandwidth and time-bandwidth product vs. Gaussian filter bandwidth without/with external dispersion compensation after BPF2, when λ BPF2=1540.0 nm and FO=4.0 nm. (b) Eigenpulse profile after BPF2 without/with dispersion compensation when Gaussian filter bandwidth is 500 GHz.

Fig. 8.
Fig. 8.

(a). Simulated RMS pulse width after external dispersion compensation at M2 vs. length of SMF used for dispersion compensation when BPFs bandwidth=0.9 nm, λ BPF2=1550.3 nm, and λ BPF1=1553.3 nm. (b) Simulated pulse and phase profile before and after dispersion compensation with 38.1 m of SMF.

Fig. 9.
Fig. 9.

(a). Experimental spectrum at M2 when BPFs bandwidth=0.9 nm, λ BPF2=1550.3 nm, and λ BPF1=1553.3 nm. (b) Autocorrelation trace with external dispersion compensation after M2 in experiment, simulation, and calculated from the spectrum in (a).

Fig. 10.
Fig. 10.

Spectra taken from the monitor output M1 showing self-pulsating operation over the C-band with constant FO=-2.0 nm and BPFs bandwidth=0.9 nm.

Fig. 11.
Fig. 11.

(a). Output autocorrelation width vs. FO when BPFs bandwidth=0.9 nm and λ BPF2=1540.0 nm. (b) Output autocorrelation width vs. λ BPF2 when BPFs bandwidth=0.9 nm and FO=4.0 nm.

Tables (2)

Tables Icon

Table 1. Output pulse width with different BPFs bandwidth

Tables Icon

Table 2. Range of values of FO [nm] enabling the CW, SP and PB regimes of operation when BPFs bandwidth=0.9 nm

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

jAz+j2αA12β22AT2j6β33AT3+γA2A=0
POut=PInG0exp[POutPInPSat]

Metrics