Abstract

Nonlinear femtosecond pulse propagation in an all-solid photonic bandgap fiber is experimentally and numerically investigated. Guiding light in such fiber occurs via two mechanisms: photonic bandgap in the central silica core or total internal reflection in the germanium doped inclusions. By properly combining spectral filtering, dispersion tailoring and pump coupling into the fiber modes, we experimentally demonstrate efficient supercontinuum generation with controllable spectral bandwidth.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29(20), 2369–2371 (2004).
    [CrossRef] [PubMed]
  2. G. Bouwmans, V. Pureur, A. Betourne, Y. Quiquempois, M. Perrin, L. Bigot, and M. Douay, “Progress in solid core photonic bandgap fibers,” Opt. Quantum Electron. 39(12-13), 949–961 (2007).
    [CrossRef]
  3. Q. Fang, Z. Wang, L. Jin, J. Liu, Y. Yue, Y. Liu, G. Kai, S. Yuan, and X. Dong, “Dispersion design of all-solid photonic bandgap fiber,” J. Opt. Soc. Am. B 24(11), 2899–2905 (2007).
    [CrossRef]
  4. T. P. White, R. C. McPhedran, C. Martijnde Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27(22), 1977–1979 (2002).
    [CrossRef]
  5. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002).
    [CrossRef]
  6. G. Ren, P. Shum, L. Zhang, X. Yu, W. Tong, and J. Luo, “Low-loss all-solid photonic bandgap fiber,” Opt. Lett. 32(9), 1023–1025 (2007).
    [CrossRef] [PubMed]
  7. A. Isomaki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14(20), 9238–9243 (2006).
    [CrossRef] [PubMed]
  8. L. Jin, Z. Wang, Q. Fang, B. Liu, Y. Liu, G. Kai, X. Dong, and B.-O. Guan, “Bragg grating resonances in all-solid bandgap fibers,” Opt. Lett. 32(18), 2717–2719 (2007).
    [CrossRef] [PubMed]
  9. J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A, Pure Appl. Opt. 6(8), 798–804 (2004).
    [CrossRef]
  10. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
    [CrossRef]
  11. A. Fuerbach, P. Steinvurzel, J. A. Bolger, and B. J. Eggleton, “Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers,” Opt. Express 13(8), 2977–2987 (2005).
    [CrossRef] [PubMed]
  12. S. Dasgupta, B. P. Pal, and M. R. Shenoy, “Nonlinear spectral broadening in solid-core Bragg fibers,” J. Lightwave Technol. 25(9), 2475–2481 (2007).
    [CrossRef]
  13. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett. 10(9), 457–459 (1985).
    [CrossRef] [PubMed]
  14. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008).
    [CrossRef]
  15. B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation in photonic crystal fiber: Influence of the frequency dependent mode area,” Appl. Phys. B 81, 337–342 (2005).
    [CrossRef]
  16. J. Laegsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express 15(24), 16110–16123 (2007).
    [CrossRef] [PubMed]

2008 (1)

2007 (6)

2006 (2)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

A. Isomaki and O. G. Okhotnikov, “Femtosecond soliton mode-locked laser based on ytterbium-doped photonic bandgap fiber,” Opt. Express 14(20), 9238–9243 (2006).
[CrossRef] [PubMed]

2005 (2)

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation in photonic crystal fiber: Influence of the frequency dependent mode area,” Appl. Phys. B 81, 337–342 (2005).
[CrossRef]

A. Fuerbach, P. Steinvurzel, J. A. Bolger, and B. J. Eggleton, “Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers,” Opt. Express 13(8), 2977–2987 (2005).
[CrossRef] [PubMed]

2004 (2)

F. Luan, A. K. George, T. D. Hedley, G. J. Pearce, D. M. Bird, J. C. Knight, and P. St. J. Russell, “All-solid photonic bandgap fiber,” Opt. Lett. 29(20), 2369–2371 (2004).
[CrossRef] [PubMed]

J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A, Pure Appl. Opt. 6(8), 798–804 (2004).
[CrossRef]

2002 (2)

1985 (1)

Abeeluck, A. K.

Betourne, A.

G. Bouwmans, V. Pureur, A. Betourne, Y. Quiquempois, M. Perrin, L. Bigot, and M. Douay, “Progress in solid core photonic bandgap fibers,” Opt. Quantum Electron. 39(12-13), 949–961 (2007).
[CrossRef]

Bigot, L.

G. Bouwmans, V. Pureur, A. Betourne, Y. Quiquempois, M. Perrin, L. Bigot, and M. Douay, “Progress in solid core photonic bandgap fibers,” Opt. Quantum Electron. 39(12-13), 949–961 (2007).
[CrossRef]

Bird, D. M.

Bolger, J. A.

Bouwmans, G.

G. Bouwmans, V. Pureur, A. Betourne, Y. Quiquempois, M. Perrin, L. Bigot, and M. Douay, “Progress in solid core photonic bandgap fibers,” Opt. Quantum Electron. 39(12-13), 949–961 (2007).
[CrossRef]

Coen, S.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation in photonic crystal fiber: Influence of the frequency dependent mode area,” Appl. Phys. B 81, 337–342 (2005).
[CrossRef]

Dasgupta, S.

Dong, X.

Douay, M.

G. Bouwmans, V. Pureur, A. Betourne, Y. Quiquempois, M. Perrin, L. Bigot, and M. Douay, “Progress in solid core photonic bandgap fibers,” Opt. Quantum Electron. 39(12-13), 949–961 (2007).
[CrossRef]

Dudley, J. M.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation in photonic crystal fiber: Influence of the frequency dependent mode area,” Appl. Phys. B 81, 337–342 (2005).
[CrossRef]

Eggleton, B. J.

Fang, Q.

Finot, C.

Fuerbach, A.

Genty, G.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

George, A. K.

Guan, B.-O.

Headley, C.

Hedley, T. D.

Isomaki, A.

Jin, L.

Johnson, A. M.

Kai, G.

Kibler, B.

C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008).
[CrossRef]

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation in photonic crystal fiber: Influence of the frequency dependent mode area,” Appl. Phys. B 81, 337–342 (2005).
[CrossRef]

Knight, J. C.

Laegsgaard, J.

J. Laegsgaard, “Mode profile dispersion in the generalized nonlinear Schrödinger equation,” Opt. Express 15(24), 16110–16123 (2007).
[CrossRef] [PubMed]

J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A, Pure Appl. Opt. 6(8), 798–804 (2004).
[CrossRef]

Litchinitser, N. M.

Liu, B.

Liu, J.

Liu, Y.

Luan, F.

Luo, J.

Martijnde Sterke, C.

McPhedran, R. C.

Okhotnikov, O. G.

Pal, B. P.

Pearce, G. J.

Perrin, M.

G. Bouwmans, V. Pureur, A. Betourne, Y. Quiquempois, M. Perrin, L. Bigot, and M. Douay, “Progress in solid core photonic bandgap fibers,” Opt. Quantum Electron. 39(12-13), 949–961 (2007).
[CrossRef]

Provost, L.

Pureur, V.

G. Bouwmans, V. Pureur, A. Betourne, Y. Quiquempois, M. Perrin, L. Bigot, and M. Douay, “Progress in solid core photonic bandgap fibers,” Opt. Quantum Electron. 39(12-13), 949–961 (2007).
[CrossRef]

Quiquempois, Y.

G. Bouwmans, V. Pureur, A. Betourne, Y. Quiquempois, M. Perrin, L. Bigot, and M. Douay, “Progress in solid core photonic bandgap fibers,” Opt. Quantum Electron. 39(12-13), 949–961 (2007).
[CrossRef]

Ren, G.

Russell, P. St. J.

Shenoy, M. R.

Shum, P.

Steinvurzel, P.

Stolen, R. H.

Tomlinson, W. J.

Tong, W.

Wabnitz, S.

Wang, Z.

White, T. P.

Yu, X.

Yuan, S.

Yue, Y.

Zhang, L.

Appl. Phys. B (1)

B. Kibler, J. M. Dudley, and S. Coen, “Supercontinuum generation in photonic crystal fiber: Influence of the frequency dependent mode area,” Appl. Phys. B 81, 337–342 (2005).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. A, Pure Appl. Opt. (1)

J. Laegsgaard, “Gap formation and guided modes in photonic bandgap fibres with high-index rods,” J. Opt. A, Pure Appl. Opt. 6(8), 798–804 (2004).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Express (3)

Opt. Lett. (6)

Opt. Quantum Electron. (1)

G. Bouwmans, V. Pureur, A. Betourne, Y. Quiquempois, M. Perrin, L. Bigot, and M. Douay, “Progress in solid core photonic bandgap fibers,” Opt. Quantum Electron. 39(12-13), 949–961 (2007).
[CrossRef]

Rev. Mod. Phys. (1)

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Numerical calculations of the effective index of the fundamental core mode for the PBGF three bandgaps (circles) compared with the refractive index of silica. The normalized transmission spectrum is obtained by butt-coupling a SC source to 1 m of the all-solid PBGF. The inset shows the SEM image of the all-solid PBGF. Bright cylinders correspond to Ge-doped inclusions.

Fig. 2
Fig. 2

Numerical calculations of the wavelength-dependent parameters of the fundamental mode for both guiding mechanisms. (a-b) GVD, loss and nonlinear coefficients for PBG guiding in the second bandgap. (c,d) GVD and nonlinear coefficient for Ge-doped inclusion guiding.

Fig. 3
Fig. 3

Observed output mode (a) after PBG guiding into the central silica core, and (b) after TIR guiding into a Ge-doped inclusion. The numerical treatment of another image obtained for wide illumination (of the core and the rods) allowed us to retrieve positions of high index rods, and then superimpose the fiber structure on the mode distribution. Experimental spectra obtained for increasing input peak powers injected into (c) the central silica core (P0 = 0.35, 2 and 6.6 kW) and (d) a Ge-doped inclusion (P0 = 1, 12 and 28 kW). (e) and (f) Numerical simulations corresponding to (c) and (d), respectively. Output temporal intensity simulated (g) into the central silica core (P0 = 6.6 kW) and (h) into a Ge-doped inclusion (P0 = 12 kW) associated with similar spectral bandwidths.

Fig. 4
Fig. 4

SC bandwidths (at −20dB) obtained numerically (lines) and experimentally (markers) for increasing input peak power (a) in the central silica core and (b) in a Ge-doped rod. Two different pump wavelengths were analyzed.

Metrics