Abstract

The reflection of surface plasmon polaritons by deep linear grooves structured into gold surfaces is investigated with numerical finite-difference-in-time-domain as well as boundary-element-method calculations. Groove widths of 25 and 100 nm are studied, with depths as large as 500 nm. The reflection depends strongly on wavelength, groove depth, and width. By systematically varying these parameters and studying the field profiles in the grooves as well as mode dispersion, we relate the resonances of the reflectivity to resonant coupling of propagating planar plasmon modes to cavity modes inside the grooves. By careful design of the groove width and depth the reflectivity can be tuned to values up to at least 30% for either a narrow or wide band of wavelengths.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, 1988).
  2. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
    [CrossRef] [PubMed]
  3. J.-C. Weeber, Y. Lacroute, A. Dereux, T. W. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
    [CrossRef]
  4. M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
    [CrossRef]
  5. J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nano-grooves/ridges: Efficient mirrors,” Appl. Phys. Lett. 86(25), 251106 (2005).
    [CrossRef]
  6. M. Kretschmann, A. A. Maradudin, and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66(24), 245408 (2002).
    [CrossRef]
  7. F. Pincemin, J.-J. Greffet, and J.-J. Greffet, “Propagation and localization of a surface plasmon polariton on a finite grating,” J. Opt. Soc. Am. B 13(7), 1499–1509 (1996).
    [CrossRef]
  8. J. A. Sánchez-Gil, “Surface defect scattering of surface plasmon polaritons: Mirrors and light emitters,” Appl. Phys. Lett. 73(24), 3509–3511 (1998).
    [CrossRef]
  9. A. Y. Nikitin, F. Lopez-Tejeira, and L. Martin-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75(3), 035129 (2007).
    [CrossRef]
  10. W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59(19), 12661–12666 (1999).
    [CrossRef]
  11. E. K. Popov, N. Bonod, and S. Enoch, “Comparison of plasmon surface waves on shallow and deep metallic 1d and 2d gratings,” Opt. Express 15(7), 4224–4237 (2007).
    [CrossRef] [PubMed]
  12. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
    [CrossRef] [PubMed]
  13. P. Lallane, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23(7), 1608–1615 (2006).
    [CrossRef]
  14. E. D. Palik, Handbook of Optical Constants, (Academic Press, 1985).
  15. F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
    [CrossRef]
  16. K. Vahala, Optical Microcavities, (World Scientific, 2004).
  17. E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31(23), 3447–3449 (2006).
    [CrossRef] [PubMed]
  18. I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66(3), 035403 (2002).
    [CrossRef]
  19. J. Dionne, L. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
    [CrossRef]

2008 (1)

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

2007 (2)

E. K. Popov, N. Bonod, and S. Enoch, “Comparison of plasmon surface waves on shallow and deep metallic 1d and 2d gratings,” Opt. Express 15(7), 4224–4237 (2007).
[CrossRef] [PubMed]

A. Y. Nikitin, F. Lopez-Tejeira, and L. Martin-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75(3), 035129 (2007).
[CrossRef]

2006 (4)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

P. Lallane, J. P. Hugonin, and J. C. Rodier, “Approximate model for surface-plasmon generation at slit apertures,” J. Opt. Soc. Am. A 23(7), 1608–1615 (2006).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31(23), 3447–3449 (2006).
[CrossRef] [PubMed]

2005 (2)

J. Dionne, L. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nano-grooves/ridges: Efficient mirrors,” Appl. Phys. Lett. 86(25), 251106 (2005).
[CrossRef]

2004 (1)

J.-C. Weeber, Y. Lacroute, A. Dereux, T. W. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

2002 (3)

M. Kretschmann, A. A. Maradudin, and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66(24), 245408 (2002).
[CrossRef]

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66(3), 035403 (2002).
[CrossRef]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

1999 (1)

W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59(19), 12661–12666 (1999).
[CrossRef]

1998 (1)

J. A. Sánchez-Gil, “Surface defect scattering of surface plasmon polaritons: Mirrors and light emitters,” Appl. Phys. Lett. 73(24), 3509–3511 (1998).
[CrossRef]

1996 (1)

Atwater, H. A.

J. Dionne, L. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Barbara, A.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Baudrion, A.-L.

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

Baudrion, A.-L.

J.-C. Weeber, Y. Lacroute, A. Dereux, T. W. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Bonod, N.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31(23), 3447–3449 (2006).
[CrossRef] [PubMed]

Dereux, A.

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

J.-C. Weeber, Y. Lacroute, A. Dereux, T. W. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

Dionne, J.

J. Dionne, L. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Ebbesen, T. W.

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

J.-C. Weeber, Y. Lacroute, A. Dereux, T. W. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Enoch, S.

García de Abajo, F. J.

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

Garcia-Vidal, F. J.

Girard, C.

J.-C. Weeber, Y. Lacroute, A. Dereux, T. W. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Gonzalez, M. U.

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

J.-C. Weeber, Y. Lacroute, A. Dereux, T. W. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Greffet, J.-J.

Howie, A.

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

Hugonin, J. P.

Krenn, J. R.

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

Kretschmann, M.

M. Kretschmann, A. A. Maradudin, and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66(24), 245408 (2002).
[CrossRef]

Lacroute, Y.

J.-C. Weeber, Y. Lacroute, A. Dereux, T. W. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Lallane, P.

Laluet, J.-Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Le Perchec, J.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

López-Ríos, T.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Lopez-Tejeira, F.

A. Y. Nikitin, F. Lopez-Tejeira, and L. Martin-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75(3), 035129 (2007).
[CrossRef]

Maradudin, A. A.

J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nano-grooves/ridges: Efficient mirrors,” Appl. Phys. Lett. 86(25), 251106 (2005).
[CrossRef]

M. Kretschmann, A. A. Maradudin, and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66(24), 245408 (2002).
[CrossRef]

M. Kretschmann, A. A. Maradudin, and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66(24), 245408 (2002).
[CrossRef]

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66(3), 035403 (2002).
[CrossRef]

Martin-Moreno, L.

A. Y. Nikitin, F. Lopez-Tejeira, and L. Martin-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75(3), 035129 (2007).
[CrossRef]

E. Moreno, F. J. Garcia-Vidal, S. G. Rodrigo, L. Martin-Moreno, and S. I. Bozhevolnyi, “Channel plasmon-polaritons: modal shape, dispersion, and losses,” Opt. Lett. 31(23), 3447–3449 (2006).
[CrossRef] [PubMed]

Moreno, E.

Nikitin, A. Y.

A. Y. Nikitin, F. Lopez-Tejeira, and L. Martin-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75(3), 035129 (2007).
[CrossRef]

Novikov, I. V.

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66(3), 035403 (2002).
[CrossRef]

Pincemin, F.

Polman, A.

J. Dionne, L. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Popov, E. K.

Preist, T. W.

W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59(19), 12661–12666 (1999).
[CrossRef]

Quémerais, P.

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Rodier, J. C.

Rodrigo, S. G.

Sambles, J. R.

W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59(19), 12661–12666 (1999).
[CrossRef]

Sánchez-Gil, J. A.

J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nano-grooves/ridges: Efficient mirrors,” Appl. Phys. Lett. 86(25), 251106 (2005).
[CrossRef]

J. A. Sánchez-Gil, “Surface defect scattering of surface plasmon polaritons: Mirrors and light emitters,” Appl. Phys. Lett. 73(24), 3509–3511 (1998).
[CrossRef]

Stepanov, A. L.

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

Sweatlock, L.

J. Dionne, L. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

Tan, W.-C.

W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59(19), 12661–12666 (1999).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Wanstall, N. P.

W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59(19), 12661–12666 (1999).
[CrossRef]

Weeber, J.-C.

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

J.-C. Weeber, Y. Lacroute, A. Dereux, T. W. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Appl. Phys. Lett. (2)

J. A. Sánchez-Gil and A. A. Maradudin, “Surface-plasmon polariton scattering from a finite array of nano-grooves/ridges: Efficient mirrors,” Appl. Phys. Lett. 86(25), 251106 (2005).
[CrossRef]

J. A. Sánchez-Gil, “Surface defect scattering of surface plasmon polaritons: Mirrors and light emitters,” Appl. Phys. Lett. 73(24), 3509–3511 (1998).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Nature (1)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440(7083), 508–511 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (8)

I. V. Novikov and A. A. Maradudin, “Channel polaritons,” Phys. Rev. B 66(3), 035403 (2002).
[CrossRef]

J. Dionne, L. Sweatlock, H. A. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B 72(7), 075405 (2005).
[CrossRef]

F. J. García de Abajo and A. Howie, “Relativistic electron energy loss and electron-induced photon emission in inhomogeneous dielectrics,” Phys. Rev. B 65, 115418 (2002).
[CrossRef]

J.-C. Weeber, Y. Lacroute, A. Dereux, T. W. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45° surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

M. Kretschmann, A. A. Maradudin, and A. A. Maradudin, “Band structures of two-dimensional surface-plasmon polaritonic crystals,” Phys. Rev. B 66(24), 245408 (2002).
[CrossRef]

A. Y. Nikitin, F. Lopez-Tejeira, and L. Martin-Moreno, “Scattering of surface plasmon polaritons by one-dimensional inhomogeneities,” Phys. Rev. B 75(3), 035129 (2007).
[CrossRef]

W.-C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, “Flat surface-plasmon-polariton bands and resonant optical absorption on short-pitch metal gratings,” Phys. Rev. B 59(19), 12661–12666 (1999).
[CrossRef]

Phys. Rev. Lett. (1)

J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100(6), 066408 (2008).
[CrossRef] [PubMed]

Other (3)

E. D. Palik, Handbook of Optical Constants, (Academic Press, 1985).

K. Vahala, Optical Microcavities, (World Scientific, 2004).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Springer, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Reflectivity for surface plasmons incident perpendicularly onto a groove structured into a gold surface as a function of groove depth and wavelength calculated using FDTD. Groove width: (a) 25 nm; (b) 100 nm. The inset shows a schematic of the groove shape.

Fig. 2
Fig. 2

Magnetic field intensity calculated with the boundary element method for a 500 nm deep groove at a wavelength of 640 nm. The SPP was launched by an incoming electron impacting 2900 nm to the left of the groove. The blue arrows denote the Poynting vector. Inset: Magnetic field intensity for a 70 nm deep groove at the same wavelength.

Fig. 3
Fig. 3

Black curves and symbols: FDTD calculations of the reflectivity for surface plasmons incident perpendicularly onto a groove structured into a gold surface as a function of groove depth. Red curves and symbols: Electric field intensity integrated over the area A of the groove as calculated from BEM. (a) Calculations as a function of groove depth at a free-space wavelength of 640 nm for a 25 nm wide groove; (b) Calculations as a function of wavelength for a 500 nm deep, 25 nm wide groove.

Fig. 4
Fig. 4

Calculated electric field along a line in the center of a groove as a function of wavelength and position for a 500nm deep, 25nm wide groove in gold. For each wavelength the field was normalized to its maximum. The dashed lines indicate the wavelengths of maximum reflectivity from Fig. 3(b).

Fig. 5
Fig. 5

(a) Dispersion relation for plasmons propagating in 300 nm (red line) and 500 nm (blue line) deep grooves with a width of 25 nm calculated using BEM. Light line in air (green) and single Au/air interface SPP dispersion (black). (b) FDTD calculations of the reflectivity as a function of wavelength for SPPs incident perpendicular onto a 300 nm (red line) and 500 nm (blue line) groove. (c) Electric field intensity inside a 300 nm deep groove at wavelengths of maximum reflectivity (590 and 800 nm). (d) Electric field intensity inside a 500 nm deep groove at wavelengths of maximum reflectivity (640 and 820 nm).

Fig. 6
Fig. 6

Cavity quality factor Q for 25 nm (black) and 100 nm (red) wide grooves with depths of 120 nm and 500 nm. Q was calculated from FDTD calculations of the groove end reflection coefficients and propagation losses for MIM plasmons.

Metrics