Abstract

A new monolithic integration scheme, namely cascaded-integration (CI), for improving high-speed optical modulation is proposed and demonstrated. High-speed electroabsorption modulators (EAMs) and semiconductor optical amplifiers (SOAs) are taken as the integrated elements of CI. This structure is based on an optical waveguide defined by cascading segmented EAMs with segmented SOAs, while high-impedance transmission lines (HITLs) are used for periodically interconnecting EAMs, forming a distributive optical re-amplification and re-modulation. Therefore, not only the optical modulation can be beneficial from SOA gain, but also high electrical reflection due to EAM low characteristic impedance can be greatly reduced. Two integration schemes, CI and conventional single-section (SS), with same total EAM- and SOA- lengths are fabricated and compared to examine the concept. Same modulation-depth against with EAM bias (up to 5V) as well as SOA injection current (up to 60mA) is found in both structures. In comparison with SS, a < 1dB extra optical-propagation loss in CI is measured due to multi-sections of electrical-isolation regions between EAMs and SOAs, suggesting no significant deterioration in CI on DC optical modulation efficiency. Lower than −12dB of electrical reflection from D.C. to 30GHz is observed in CI, better than −5dB reflection in SS for frequency of above 5GHz. Superior high-speed electrical properties in CI structure can thus lead to higher speed of electrical-to-optical (EO) response, where −3dB bandwidths are >30GHz and 13GHz for CI and SS respectively. Simulation results on electrical and EO response are quite consistent with measurement, confirming that CI can lower the driving power at high-speed regime, while the optical loss is still kept the same level. Taking such distributive advantage (CI) with optical gain, not only higher-speed modulation with high output optical power can be attained, but also the trade-off issue due to impedance mismatch can be released to reduce the driving power of modulator. Such kind of monolithic integration scheme also has potential for the applications of other high-speed optoelectronics devices.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Talli and P. D. Townsend, “Hybrid DWDM-TDM long-reach PON for next-generation optical access,” J. Lightwave Technol. 24(7), 2827–2834 (2006).
    [CrossRef]
  2. I. T. Monroy, F. Ohman, K. Yvind, L. J. Christiansen, J. Mork, C. Peucheret, and P. Jeppesen, “Monolithically integrated reflective SOA-EA carrier re-modulator for broadband access nodes,” Opt. Express 14(18), 8060–8064 (2006).
    [CrossRef]
  3. K. Asaka, Y. Suzaki, Y. Kawaguchi, S. Kondo, Y. Noguchi, H. Okamoto, R. Iga, and S. Oku, “Lossless electroabsorption modulator monolithically integrated with a semiconductor optical amplifier and a passive waveguide,” IEEE Photon. Technol. Lett. 15(5), 679–681 (2003).
    [CrossRef]
  4. L. P. Hou, H. L. Zhu, F. Zhou, L. F. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
    [CrossRef]
  5. B. Xiong, J. Wang, L. Zhang, J. Tian, C. Sun, and Y. Luo, “High-speed (>40 GHz) integrated electroabsorption modulator based on identical epitaxial layer approach,” IEEE Photon. Technol. Lett. 17(2), 327–329 (2005).
    [CrossRef]
  6. J.-R. Kim and B.-K. Kang, “10 Gbps High Power Electro-Absorption Modulated Laser Monolithically Integrated with a Semiconductor Optical Amplifier for Long-Distance Transmission,” Jpn. J. Appl. Phys. 43(No. 1A/B), L5–L7 (2004).
    [CrossRef]
  7. Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y. S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14(3), 801–807 (2008).
    [CrossRef]
  8. P. Bernasconi, L. M. Zhang, W. G. Yang, N. Sauer, L. L. Buhl, J. H. Sinsky, I. Kang, S. Chandrasekhar, and D. T. Neilson, “Monolithically integrated 40-Gb/s switchable wavelength converter,” J. Lightwave Technol. 24(1), 71–76 (2006).
    [CrossRef]
  9. G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator—design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
    [CrossRef]
  10. T. H. Fukano, M. Yamanaka, Tamura, and Y Kondo, ”Very-Low-Driving-Voltage Electroabsorption Modulators Operating at 40 Gb/s,” J. Lightwave Technol. 24(5), 2219–2224 (2006).
    [CrossRef]
  11. J.-W. Shi, A.-C. Shiao, C.-C. Chu, and Y.-S. Wu, “‘Dual-Depletion-Region Electroabsorption Modulator With Evanescently Coupled Waveguide for High-Speed (>40 GHz) and Low Driving-Voltage Performance,” IEEE Photon. Technol. Lett. 19(5), 345–347 (2007).
    [CrossRef]
  12. S. Z. Zhang, Y. J. Chiu, P. Abraham, and J. E. Bowers, “25-GHz polarization-insensitive electroabsorption modulators with traveling-wave electrodes,” IEEE Photon. Technol. Lett. 11(2), 191–193 (1999).
    [CrossRef]
  13. T. H. Wu, Y. J. Chiu, and F. Z. Lin, “High-speed (60 GHz) and low-voltage-driving electroabsorption modulator using two-consecutive-steps selective-undercut-wet-etching waveguide,” IEEE Photon. Technol. Lett. 20(14), 1261–1263 (2008).
    [CrossRef]
  14. T. Y. Chang, “Design optimization of low-impedance high-speed optical modulators for digital performance,” J. Lightwave Technol. 23(12), 4321–4331 (2005).
    [CrossRef]
  15. S. Irmscher, R. Lewén, and U. Eriksson, “‘InP–InGaAsP High-Speed Traveling-Wave Electroabsorption Modulators With Integrated Termination Resistors,” IEEE Photon. Technol. Lett. 14(7), 923–925 (2002).
    [CrossRef]
  16. K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Bowers, J. E., “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
    [CrossRef]

2008 (2)

Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y. S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14(3), 801–807 (2008).
[CrossRef]

T. H. Wu, Y. J. Chiu, and F. Z. Lin, “High-speed (60 GHz) and low-voltage-driving electroabsorption modulator using two-consecutive-steps selective-undercut-wet-etching waveguide,” IEEE Photon. Technol. Lett. 20(14), 1261–1263 (2008).
[CrossRef]

2007 (1)

J.-W. Shi, A.-C. Shiao, C.-C. Chu, and Y.-S. Wu, “‘Dual-Depletion-Region Electroabsorption Modulator With Evanescently Coupled Waveguide for High-Speed (>40 GHz) and Low Driving-Voltage Performance,” IEEE Photon. Technol. Lett. 19(5), 345–347 (2007).
[CrossRef]

2006 (4)

2005 (3)

T. Y. Chang, “Design optimization of low-impedance high-speed optical modulators for digital performance,” J. Lightwave Technol. 23(12), 4321–4331 (2005).
[CrossRef]

L. P. Hou, H. L. Zhu, F. Zhou, L. F. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
[CrossRef]

B. Xiong, J. Wang, L. Zhang, J. Tian, C. Sun, and Y. Luo, “High-speed (>40 GHz) integrated electroabsorption modulator based on identical epitaxial layer approach,” IEEE Photon. Technol. Lett. 17(2), 327–329 (2005).
[CrossRef]

2004 (1)

J.-R. Kim and B.-K. Kang, “10 Gbps High Power Electro-Absorption Modulated Laser Monolithically Integrated with a Semiconductor Optical Amplifier for Long-Distance Transmission,” Jpn. J. Appl. Phys. 43(No. 1A/B), L5–L7 (2004).
[CrossRef]

2003 (1)

K. Asaka, Y. Suzaki, Y. Kawaguchi, S. Kondo, Y. Noguchi, H. Okamoto, R. Iga, and S. Oku, “Lossless electroabsorption modulator monolithically integrated with a semiconductor optical amplifier and a passive waveguide,” IEEE Photon. Technol. Lett. 15(5), 679–681 (2003).
[CrossRef]

2002 (1)

S. Irmscher, R. Lewén, and U. Eriksson, “‘InP–InGaAsP High-Speed Traveling-Wave Electroabsorption Modulators With Integrated Termination Resistors,” IEEE Photon. Technol. Lett. 14(7), 923–925 (2002).
[CrossRef]

1999 (2)

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator—design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[CrossRef]

S. Z. Zhang, Y. J. Chiu, P. Abraham, and J. E. Bowers, “25-GHz polarization-insensitive electroabsorption modulators with traveling-wave electrodes,” IEEE Photon. Technol. Lett. 11(2), 191–193 (1999).
[CrossRef]

1997 (1)

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Bowers, J. E., “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
[CrossRef]

Abraham, P.

S. Z. Zhang, Y. J. Chiu, P. Abraham, and J. E. Bowers, “25-GHz polarization-insensitive electroabsorption modulators with traveling-wave electrodes,” IEEE Photon. Technol. Lett. 11(2), 191–193 (1999).
[CrossRef]

Asaka, K.

K. Asaka, Y. Suzaki, Y. Kawaguchi, S. Kondo, Y. Noguchi, H. Okamoto, R. Iga, and S. Oku, “Lossless electroabsorption modulator monolithically integrated with a semiconductor optical amplifier and a passive waveguide,” IEEE Photon. Technol. Lett. 15(5), 679–681 (2003).
[CrossRef]

Bernasconi, P.

Bian, J.

L. P. Hou, H. L. Zhu, F. Zhou, L. F. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
[CrossRef]

Bowers, J. E.

S. Z. Zhang, Y. J. Chiu, P. Abraham, and J. E. Bowers, “25-GHz polarization-insensitive electroabsorption modulators with traveling-wave electrodes,” IEEE Photon. Technol. Lett. 11(2), 191–193 (1999).
[CrossRef]

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Bowers, J. E., “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
[CrossRef]

Buhl, L. L.

Chandrasekhar, S.

Chang, T. Y.

Chen, W. X.

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator—design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[CrossRef]

Chiu, Y. J.

T. H. Wu, Y. J. Chiu, and F. Z. Lin, “High-speed (60 GHz) and low-voltage-driving electroabsorption modulator using two-consecutive-steps selective-undercut-wet-etching waveguide,” IEEE Photon. Technol. Lett. 20(14), 1261–1263 (2008).
[CrossRef]

S. Z. Zhang, Y. J. Chiu, P. Abraham, and J. E. Bowers, “25-GHz polarization-insensitive electroabsorption modulators with traveling-wave electrodes,” IEEE Photon. Technol. Lett. 11(2), 191–193 (1999).
[CrossRef]

Christiansen, L. J.

Chu, C.-C.

J.-W. Shi, A.-C. Shiao, C.-C. Chu, and Y.-S. Wu, “‘Dual-Depletion-Region Electroabsorption Modulator With Evanescently Coupled Waveguide for High-Speed (>40 GHz) and Low Driving-Voltage Performance,” IEEE Photon. Technol. Lett. 19(5), 345–347 (2007).
[CrossRef]

de Vries, T.

Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y. S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14(3), 801–807 (2008).
[CrossRef]

den Besten, J. H.

Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y. S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14(3), 801–807 (2008).
[CrossRef]

Dorren, H. J. S.

Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y. S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14(3), 801–807 (2008).
[CrossRef]

Eriksson, U.

S. Irmscher, R. Lewén, and U. Eriksson, “‘InP–InGaAsP High-Speed Traveling-Wave Electroabsorption Modulators With Integrated Termination Resistors,” IEEE Photon. Technol. Lett. 14(7), 923–925 (2002).
[CrossRef]

Giboney, K. S.

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Bowers, J. E., “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
[CrossRef]

H. Fukano, T.

Hill, M. T.

Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y. S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14(3), 801–807 (2008).
[CrossRef]

Hou, L. P.

L. P. Hou, H. L. Zhu, F. Zhou, L. F. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
[CrossRef]

Iga, R.

K. Asaka, Y. Suzaki, Y. Kawaguchi, S. Kondo, Y. Noguchi, H. Okamoto, R. Iga, and S. Oku, “Lossless electroabsorption modulator monolithically integrated with a semiconductor optical amplifier and a passive waveguide,” IEEE Photon. Technol. Lett. 15(5), 679–681 (2003).
[CrossRef]

Irmscher, S.

S. Irmscher, R. Lewén, and U. Eriksson, “‘InP–InGaAsP High-Speed Traveling-Wave Electroabsorption Modulators With Integrated Termination Resistors,” IEEE Photon. Technol. Lett. 14(7), 923–925 (2002).
[CrossRef]

Jeppesen, P.

Kang, B.-K.

J.-R. Kim and B.-K. Kang, “10 Gbps High Power Electro-Absorption Modulated Laser Monolithically Integrated with a Semiconductor Optical Amplifier for Long-Distance Transmission,” Jpn. J. Appl. Phys. 43(No. 1A/B), L5–L7 (2004).
[CrossRef]

Kang, I.

Kawaguchi, Y.

K. Asaka, Y. Suzaki, Y. Kawaguchi, S. Kondo, Y. Noguchi, H. Okamoto, R. Iga, and S. Oku, “Lossless electroabsorption modulator monolithically integrated with a semiconductor optical amplifier and a passive waveguide,” IEEE Photon. Technol. Lett. 15(5), 679–681 (2003).
[CrossRef]

Khoe, G. D.

Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y. S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14(3), 801–807 (2008).
[CrossRef]

Kim, J.-R.

J.-R. Kim and B.-K. Kang, “10 Gbps High Power Electro-Absorption Modulated Laser Monolithically Integrated with a Semiconductor Optical Amplifier for Long-Distance Transmission,” Jpn. J. Appl. Phys. 43(No. 1A/B), L5–L7 (2004).
[CrossRef]

Kondo, S.

K. Asaka, Y. Suzaki, Y. Kawaguchi, S. Kondo, Y. Noguchi, H. Okamoto, R. Iga, and S. Oku, “Lossless electroabsorption modulator monolithically integrated with a semiconductor optical amplifier and a passive waveguide,” IEEE Photon. Technol. Lett. 15(5), 679–681 (2003).
[CrossRef]

Kondo, Y

Koonen, A. M. J.

Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y. S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14(3), 801–807 (2008).
[CrossRef]

Leijtens, X. J. M.

Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y. S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14(3), 801–807 (2008).
[CrossRef]

Lewén, R.

S. Irmscher, R. Lewén, and U. Eriksson, “‘InP–InGaAsP High-Speed Traveling-Wave Electroabsorption Modulators With Integrated Termination Resistors,” IEEE Photon. Technol. Lett. 14(7), 923–925 (2002).
[CrossRef]

Li, G. L.

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator—design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[CrossRef]

Lin, F. Z.

T. H. Wu, Y. J. Chiu, and F. Z. Lin, “High-speed (60 GHz) and low-voltage-driving electroabsorption modulator using two-consecutive-steps selective-undercut-wet-etching waveguide,” IEEE Photon. Technol. Lett. 20(14), 1261–1263 (2008).
[CrossRef]

Liu, Y.

Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y. S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14(3), 801–807 (2008).
[CrossRef]

Luo, Y.

B. Xiong, J. Wang, L. Zhang, J. Tian, C. Sun, and Y. Luo, “High-speed (>40 GHz) integrated electroabsorption modulator based on identical epitaxial layer approach,” IEEE Photon. Technol. Lett. 17(2), 327–329 (2005).
[CrossRef]

Monroy, I. T.

Mork, J.

Neilson, D. T.

Noguchi, Y.

K. Asaka, Y. Suzaki, Y. Kawaguchi, S. Kondo, Y. Noguchi, H. Okamoto, R. Iga, and S. Oku, “Lossless electroabsorption modulator monolithically integrated with a semiconductor optical amplifier and a passive waveguide,” IEEE Photon. Technol. Lett. 15(5), 679–681 (2003).
[CrossRef]

Oei, Y. S.

Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y. S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14(3), 801–807 (2008).
[CrossRef]

Ohman, F.

Okamoto, H.

K. Asaka, Y. Suzaki, Y. Kawaguchi, S. Kondo, Y. Noguchi, H. Okamoto, R. Iga, and S. Oku, “Lossless electroabsorption modulator monolithically integrated with a semiconductor optical amplifier and a passive waveguide,” IEEE Photon. Technol. Lett. 15(5), 679–681 (2003).
[CrossRef]

Oku, S.

K. Asaka, Y. Suzaki, Y. Kawaguchi, S. Kondo, Y. Noguchi, H. Okamoto, R. Iga, and S. Oku, “Lossless electroabsorption modulator monolithically integrated with a semiconductor optical amplifier and a passive waveguide,” IEEE Photon. Technol. Lett. 15(5), 679–681 (2003).
[CrossRef]

Pappert, S. A.

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator—design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[CrossRef]

Peucheret, C.

Rodwell, M. J. W.

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Bowers, J. E., “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
[CrossRef]

Sauer, N.

Shi, J.-W.

J.-W. Shi, A.-C. Shiao, C.-C. Chu, and Y.-S. Wu, “‘Dual-Depletion-Region Electroabsorption Modulator With Evanescently Coupled Waveguide for High-Speed (>40 GHz) and Low Driving-Voltage Performance,” IEEE Photon. Technol. Lett. 19(5), 345–347 (2007).
[CrossRef]

Shiao, A.-C.

J.-W. Shi, A.-C. Shiao, C.-C. Chu, and Y.-S. Wu, “‘Dual-Depletion-Region Electroabsorption Modulator With Evanescently Coupled Waveguide for High-Speed (>40 GHz) and Low Driving-Voltage Performance,” IEEE Photon. Technol. Lett. 19(5), 345–347 (2007).
[CrossRef]

Sinsky, J. H.

Smalbrugge, E.

Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y. S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14(3), 801–807 (2008).
[CrossRef]

Smit, M. K.

Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y. S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14(3), 801–807 (2008).
[CrossRef]

Sun, C.

B. Xiong, J. Wang, L. Zhang, J. Tian, C. Sun, and Y. Luo, “High-speed (>40 GHz) integrated electroabsorption modulator based on identical epitaxial layer approach,” IEEE Photon. Technol. Lett. 17(2), 327–329 (2005).
[CrossRef]

Sun, C. K.

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator—design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[CrossRef]

Suzaki, Y.

K. Asaka, Y. Suzaki, Y. Kawaguchi, S. Kondo, Y. Noguchi, H. Okamoto, R. Iga, and S. Oku, “Lossless electroabsorption modulator monolithically integrated with a semiconductor optical amplifier and a passive waveguide,” IEEE Photon. Technol. Lett. 15(5), 679–681 (2003).
[CrossRef]

Talli, G.

Tamura,

Tangdiongga, E.

Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y. S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14(3), 801–807 (2008).
[CrossRef]

Tian, J.

B. Xiong, J. Wang, L. Zhang, J. Tian, C. Sun, and Y. Luo, “High-speed (>40 GHz) integrated electroabsorption modulator based on identical epitaxial layer approach,” IEEE Photon. Technol. Lett. 17(2), 327–329 (2005).
[CrossRef]

Townsend, P. D.

van Zantvoort, J. H. C.

Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y. S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14(3), 801–807 (2008).
[CrossRef]

Wang, J.

B. Xiong, J. Wang, L. Zhang, J. Tian, C. Sun, and Y. Luo, “High-speed (>40 GHz) integrated electroabsorption modulator based on identical epitaxial layer approach,” IEEE Photon. Technol. Lett. 17(2), 327–329 (2005).
[CrossRef]

Wang, L. F.

L. P. Hou, H. L. Zhu, F. Zhou, L. F. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
[CrossRef]

Wang, W.

L. P. Hou, H. L. Zhu, F. Zhou, L. F. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
[CrossRef]

Wu, T. H.

T. H. Wu, Y. J. Chiu, and F. Z. Lin, “High-speed (60 GHz) and low-voltage-driving electroabsorption modulator using two-consecutive-steps selective-undercut-wet-etching waveguide,” IEEE Photon. Technol. Lett. 20(14), 1261–1263 (2008).
[CrossRef]

Wu, Y.-S.

J.-W. Shi, A.-C. Shiao, C.-C. Chu, and Y.-S. Wu, “‘Dual-Depletion-Region Electroabsorption Modulator With Evanescently Coupled Waveguide for High-Speed (>40 GHz) and Low Driving-Voltage Performance,” IEEE Photon. Technol. Lett. 19(5), 345–347 (2007).
[CrossRef]

Xiong, B.

B. Xiong, J. Wang, L. Zhang, J. Tian, C. Sun, and Y. Luo, “High-speed (>40 GHz) integrated electroabsorption modulator based on identical epitaxial layer approach,” IEEE Photon. Technol. Lett. 17(2), 327–329 (2005).
[CrossRef]

Yamanaka, M.

Yang, W. G.

Yu, P. K. L.

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator—design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[CrossRef]

Yvind, K.

Zhang, L.

B. Xiong, J. Wang, L. Zhang, J. Tian, C. Sun, and Y. Luo, “High-speed (>40 GHz) integrated electroabsorption modulator based on identical epitaxial layer approach,” IEEE Photon. Technol. Lett. 17(2), 327–329 (2005).
[CrossRef]

Zhang, L. M.

Zhang, S. Z.

S. Z. Zhang, Y. J. Chiu, P. Abraham, and J. E. Bowers, “25-GHz polarization-insensitive electroabsorption modulators with traveling-wave electrodes,” IEEE Photon. Technol. Lett. 11(2), 191–193 (1999).
[CrossRef]

Zhou, F.

L. P. Hou, H. L. Zhu, F. Zhou, L. F. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
[CrossRef]

Zhu, H. L.

L. P. Hou, H. L. Zhu, F. Zhou, L. F. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

Y. Liu, E. Tangdiongga, M. T. Hill, J. H. C. van Zantvoort, J. H. den Besten, T. de Vries, E. Smalbrugge, Y. S. Oei, X. J. M. Leijtens, M. K. Smit, A. M. J. Koonen, G. D. Khoe, and H. J. S. Dorren, “Ultrafast all-optical wavelength routing of data packets utilizing an SOA-based wavelength converter and a monolithically integrated optical flip-flop,” IEEE J. Sel. Top. Quantum Electron. 14(3), 801–807 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (6)

K. Asaka, Y. Suzaki, Y. Kawaguchi, S. Kondo, Y. Noguchi, H. Okamoto, R. Iga, and S. Oku, “Lossless electroabsorption modulator monolithically integrated with a semiconductor optical amplifier and a passive waveguide,” IEEE Photon. Technol. Lett. 15(5), 679–681 (2003).
[CrossRef]

B. Xiong, J. Wang, L. Zhang, J. Tian, C. Sun, and Y. Luo, “High-speed (>40 GHz) integrated electroabsorption modulator based on identical epitaxial layer approach,” IEEE Photon. Technol. Lett. 17(2), 327–329 (2005).
[CrossRef]

J.-W. Shi, A.-C. Shiao, C.-C. Chu, and Y.-S. Wu, “‘Dual-Depletion-Region Electroabsorption Modulator With Evanescently Coupled Waveguide for High-Speed (>40 GHz) and Low Driving-Voltage Performance,” IEEE Photon. Technol. Lett. 19(5), 345–347 (2007).
[CrossRef]

S. Z. Zhang, Y. J. Chiu, P. Abraham, and J. E. Bowers, “25-GHz polarization-insensitive electroabsorption modulators with traveling-wave electrodes,” IEEE Photon. Technol. Lett. 11(2), 191–193 (1999).
[CrossRef]

T. H. Wu, Y. J. Chiu, and F. Z. Lin, “High-speed (60 GHz) and low-voltage-driving electroabsorption modulator using two-consecutive-steps selective-undercut-wet-etching waveguide,” IEEE Photon. Technol. Lett. 20(14), 1261–1263 (2008).
[CrossRef]

S. Irmscher, R. Lewén, and U. Eriksson, “‘InP–InGaAsP High-Speed Traveling-Wave Electroabsorption Modulators With Integrated Termination Resistors,” IEEE Photon. Technol. Lett. 14(7), 923–925 (2002).
[CrossRef]

IEEE Trans. Microw. Theory Tech. (2)

K. S. Giboney, M. J. W. Rodwell, and J. E. Bowers, “Bowers, J. E., “Traveling-wave photodetector theory,” IEEE Trans. Microw. Theory Tech. 45(8), 1310–1319 (1997).
[CrossRef]

G. L. Li, C. K. Sun, S. A. Pappert, W. X. Chen, and P. K. L. Yu, “Ultrahigh-speed traveling-wave electroabsorption modulator—design and analysis,” IEEE Trans. Microw. Theory Tech. 47(7), 1177–1183 (1999).
[CrossRef]

J. Lightwave Technol. (4)

Jpn. J. Appl. Phys. (1)

J.-R. Kim and B.-K. Kang, “10 Gbps High Power Electro-Absorption Modulated Laser Monolithically Integrated with a Semiconductor Optical Amplifier for Long-Distance Transmission,” Jpn. J. Appl. Phys. 43(No. 1A/B), L5–L7 (2004).
[CrossRef]

Opt. Express (1)

Semicond. Sci. Technol. (1)

L. P. Hou, H. L. Zhu, F. Zhou, L. F. Wang, J. Bian, and W. Wang, “Monolithically integrated semiconductor optical amplifier and electroabsorption modulator with dual-waveguide spot-size converter input and output,” Semicond. Sci. Technol. 20(9), 912–916 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the cascaded-integration (CI) EAMs and SOAs, where the HITLs connect with segmented EAMs and bypass segmented SOAs.

Fig. 2
Fig. 2

(a)Simulated microwave S-parameters and (b)EO response of the device under different HITL lengths, where the parameter γ is defined as the ratio of HITL length to EAM length and the total EAM is 300μm long.

Fig. 3
Fig. 3

Optical transmission of 1600nm wavelength with EAM reverses bias for CI and SS, where SOA injection current is set as 0mA and 60mA. The insertion loss of SS is lower than CI’s by less than 1 dB, indicating the optical loss in isolation regions is low.

Fig. 4
Fig. 4

The measured (dot) and calculated (line) microwave S-parameters for CI and SS EAM and SOA.

Fig. 5
Fig. 5

The measured (dot) and calculated (line) EO-response for CI and SS, where the −3dB bandwidths of SS and CI are 13GHz and >30GHz respectively. Above 17 GHz enhancement of −3 dB bandwidth from CI is obtained. The inset shows that RF link gain of 13.5dB is obtained from CI as the SOA injection current is 60mA.

Metrics